Advertisement

Chromosoma

, Volume 77, Issue 1, pp 69–81 | Cite as

Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage

  • Ricardo Benavente
  • Rodolfo Wettstein
Article

Abstract

An ultrastructural study has been made of spermatogenesis in two species of primitive spiders having holocentric chromosomes (Dysdera crocata, ♂XO and Segestria florentia X1X2O). Analysis of the meiotic prophase shows a scarcity or absence of typical leptotene to pachytene stages. Only in D. crocata have synaptonemal complex (SC) remnants been seen, and these occurred in nuclei with an extreme chromatin decondensation. In both species typical early prophase stages have been replaced by nuclei lacking SC and with their chromatin almost completely decondensed, constituting a long and well-defined diffuse stage. Only nucleoli and the condensed sex chromosomes can be identified. — In S. florentina paired non-homologous sex chromosomes lack a junction lamina and thus clearly differ from the sex chromosomes of more evolved spiders with an X1X2O male sex determination mechanism. In the same species, sex chromosomes can be recognized during metaphase I due to their special structural details, while in D. crocata the X chromosome is not distinguishable from the autosomes at this stage. — The diffuse stage and particularly the structural characteristics of the sex chromosomes during meiotic prophase are reviewed and discussed in relation to the meiotic process in other arachnid groups.

Keywords

Ultrastructural Study Synaptonemal Complex Meiotic Prophase Determination Mechanism Diffuse Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, E.G.: The diffuse diplotene stage of meiotic prophase in Neurospora. Chromosoma (Berl.) 26, 119–129 (1969)Google Scholar
  2. Benavente, R., Wettstein, R.: Evolución de los cromosomas sexuales durante la espermatogenesis de Lycosa malitiosa (macho 2n=20+X1X20, Lycosidae, Arachnida). Rev. Microsc. Electr. 3, 18–19 (1976)Google Scholar
  3. Benavente, R., Wettstein, R.: An ultrastructural cytogenetic study on the evolution of sex chromosomes during the spermatogenesis of Lycosa malitiosa (Arachnida). Chromosoma (Berl.) 64, 255–277 (1977)Google Scholar
  4. Benavente, R., Wettstein, R.: Ultrastructural cytogenetics of the sex determination mechanisms of araneids. Rev. Microsc. Electr. 5, 320–321 (1978)Google Scholar
  5. Bogdanov, Y.F.: Formation of cytoplasmic synaptonemal-like polycomplexes at leptotene and normal synaptonemal complexes at zygotene in Ascaris suum male meiosis. Chromosoma (Berl.) 61, 1–21 (1977)Google Scholar
  6. Brieger, F.G., Graner, E.A.: On the cytology of Tityus bahiensis with special reference to meiotic prophase. Genetics 28, 269–274 (1943)Google Scholar
  7. Church, K.: Arrangement of chromosome ends and axial core formation during early meiotic prophase in the male grasshopper Brachystola magna by 3rd, E.M. reconstruction. Chromosoma (Berl.) 58, 365–376 (1976)Google Scholar
  8. Diaz, M.O., Saez, F.A.: Investigaciones citogenéticas sobre algunas especies de araneidos uruguayos. An. (II) Congr. Lat. Zool. 2, 3–9 (1966)Google Scholar
  9. Fox, D.P., Hewitt, G.M., Hall, D.J.: DNA and RNA transcription of euchromatic and heterochromatic chromosome regions during grasshopper meiosis. Chromosoma (Berl.) 45, 43–62 (1974)Google Scholar
  10. Gillies, C.B.: The synaptonemal complex and chromosome structure. Ann. Rev. Genet. 9, 91–109 (1975)Google Scholar
  11. Guénin, H.A.: Observations sur la structure submicroscopique du complex axial dans les chromosomes méiotiques chez Gryllus campestris L. et G. bimawlatus De Geer (Orthopt. Gryll.). J. Microscopie 4, 749–758 (1965)Google Scholar
  12. Henderson, S.A.: RNA synthesis during male meiosis and spermiogenesis. Chromosoma (Berl.) 15, 345–366 (1964)Google Scholar
  13. Jones, G.H.: Light and electron microscope studies of chromosome pairing in relation to chiasma localization in Stethophyma grossum (Orthoptera: Acrididas). Chromosoma (Berl.) 42, 145–162 (1973)Google Scholar
  14. Kezer, J., Macgregor, H.C.: A fresh look at meiosis and centromeric heterochromatin in the red-backed salamander, Plethodon cinereus cinereus (Green). Chromosoma (Berl.) 33, 146–166 (1971)Google Scholar
  15. Kierszenbaum, A.L., Tres, L.L.: Transcription sites in spread meiotic chromosomes from mouse spermatocytes. J. Cell Biol. 63, 923–935 (1974)Google Scholar
  16. Klášterská, I., Natarajan, A.T.: The role of the diffuse stage in the cytological problems of meiosis in Rosa. Hereditas (Lund) 76, 109–116 (1974)Google Scholar
  17. Lu, B.C.: The course of meiosis and centriole behavior during the ascus development of the ascomycete Gelasinospora calospora. Chromosoma (Berl.) 22, 210–226 (1967)Google Scholar
  18. Millot, J.: Classe des Arachnes. In: Traité de Zoologie. Tome IV. (P.P. Grassé, diréct.) Paris: Masson et Cie, Éditeurs 1949Google Scholar
  19. Moens, P.B.: A new interpretation of meiotic prophase in Lycospersicon esculentum (Tomato). Chromosoma (Berl.) 15, 231–242 (1964)Google Scholar
  20. Moens, P.B.: The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma (Berl.) 29, 1–25 (1969)Google Scholar
  21. Moens, P.B.: Quantitative electron microscopy of chromosomes organization at meiotic prophase. Cold Spr. Harb. Symp. quant. Biol. 38, 99–107 (1974)Google Scholar
  22. Monesi, V.: Ribonucleic acid synthesis during mitosis and meiosis in the mouse testi. J. Cell Biol. 22, 521–532 (1964)Google Scholar
  23. Moses, M.J.: Synaptinemal complex. Ann. Rev. Genet. 2, 363–412 (1968)Google Scholar
  24. Owens, J.N., Molder, M.: Meiosis in conifers: prolongated pachytene and diffuse diplotene stages. Canad. J. Bot. 49, 2061–2064 (1971)Google Scholar
  25. Piza, S. de Toledo: Comportamento dos cromossomios na primera divisao do espermatocito do Tityus bahiensis. Sci. Genet. (Torino) 1, 255–261 (1939)Google Scholar
  26. Piza, D. de Toledo: Consideracoes en torno da meiose do Tityus bahiensis (Scorpiones-Buthidae) e uma nova teoria sobre a movimentaçeo dos cromossomios. J. de Agronomia (Piracicaba) 2, 343–370 (1939)Google Scholar
  27. Pogosianz, H.E.: Meiosis in the Djungarian hamster. I. General pattern of male meiosis. Chromosoma (Berl.) 31, 392–403 (1970)Google Scholar
  28. Rossen, J.M., Westergaard, M.: Studies on the mechanism of crossing-over. II. Meiosis and the time of meiotic chromosome replication in the ascomycete Neottiella rutilans (Fr.) Dennis. Comp. Rend. Lab. Carlsberg 35, 233–260 (1966)Google Scholar
  29. Sheridan, W.F., Barrnett, R.J.: Cytochemical studies on chromosome ultrastructure. J. Ultrastruct. Res. 27, 216–299 (1969)Google Scholar
  30. Solari, A.J., Bianchi, N.O.: The synaptic behavior of the X and Y chromosomes in the marsupial Monodelphis dimidiata. Chromosoma (Berl.) 52, 11–25 (1975)Google Scholar
  31. Sotelo, R.J., García, R., Wettstein, R.: Serial sectioning study on some meiotic stages in Scaptericus borrelli (Grylloidea). Chromosoma (Berl.) 42, 307–333 (1973)Google Scholar
  32. Sotelo, J.R., Marín, O.: Synaptonemal-like complexes and extracomplexes in Gryllacridoidea. J. Cell Biol. 59, 331a (1973)Google Scholar
  33. Sotelo, J.R., Wettstein, R.: Electron microscope study on meiosis. The sex chromosome in spermatocytes, spermatids and oocytes of Gryllus argentinus. Chromosoma (Berl.) 15, 389–415 (1964)Google Scholar
  34. Suzuki, S.: Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general consideration on chromosomal evolution. J. Sci. Hiroshima Univ. Ser. B, I, 15, 23–136 (1954)Google Scholar
  35. Wahrman, J., Nezer, R.: Disjunction and ultrastructure of a sex chromosome complex. Chromosomes today 5, 464 (1976)Google Scholar
  36. Wahrman, J., Nezer, R., Freund, O.: Multiple sex chromosome mechanisms with “segregation bodies.” Chromosomes today 4, 434 (1973)Google Scholar
  37. Westergaard, M., Wettstein, D. von: The synaptinemal complex. Ann. Rev. Genet. 6, 71–110 (1972)Google Scholar
  38. Wettstein, R.: Nucleolar organizer region ultrastructure during male meiotic prophase. J. Cell Biol. 79, 132a (1978)Google Scholar
  39. Wettstein, R., Alemán, E.: Chromosome ultrastructure during spermatogenesis of Scaptericus borrelli (Gryllidae). Rev. Microsc. Electr. 5, 304–305 (1978)Google Scholar
  40. Wettstein, R., Sandar, M.T.: The ultrastructure of the multiple sex chromosome system of Botanochara angulata (Coleoptera) during the spermatogenesis. Rev. Microsc. Electr. 5, 36–37 (1978)Google Scholar
  41. Wettstein, R., Sotelo, J.R.: Electron microscope serial reconstruction of the spermatocyte I nuclei at pachytene. J. Microscopie 6, 557–576 (1967)Google Scholar
  42. Wettstein, R., Sotelo, J.R.: The molecular architecture of synaptonemal complex. Advanc. Cell molec. Biol. 1, 109–152 (1971)Google Scholar
  43. White, M.J.D.: Animal Cytology and Evolution. 3rd ed. Cambridge: Cambridge University Press 1973Google Scholar
  44. Wilson, E.B.: The Cell in Development and Heredity. New York: The Macmillan Company, 1925Google Scholar
  45. Zenzes, M.T., Wolf, U.: Paarungsverhalten der Geschlechtchromosomen in der männlichen Meiose von Microtus agrestis. Chromosoma (Berl.) 33, 41–47 (1971)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Ricardo Benavente
    • 1
  • Rodolfo Wettstein
    • 1
  1. 1.División Biología Molecular, Unidad de Citogenética UltraestructuralInstituto de Investigaciones Biológicas Clemente EstableMontevidéoUruguay

Personalised recommendations