Behavioral Ecology and Sociobiology

, Volume 14, Issue 2, pp 81–99 | Cite as

The magnetic compass mechanism of birds and its possible association with the shifting course directions of migrants

  • Jacob Kiepenheuer


Many birds of the northern hemisphere shift their migratory course to more southerly directions when moving from northern to southern latitudes. Birds from Central Europe, for example, change their course from SW to S or from SE to S respectively (Fig. 1). This also seems to apply to some other animals.

The hypothesis presented here explains the observed shifts in migratory direction on the basis of changes in the parameters of the earth's magnetic field and hence would make a genetic fixation of shifts in the migratory direction unnecessary.

To determine the direction of migration birds do not refer to the polarity of the magnetic field but to its dip (=γ). According to the hypothesis presented here, the birds, however, do not refer to the direction of dip as previously believed but to the individual apparent angle of dip (=γ′), this angle changes depending on the heading of the bird (see Fig. 3 and Eq. 1). Maintaining a species specific or population specific γ′ the bird will move in its predetermined migratory direction. Changes in the dip of the earth's magnetic field correspond to changes in latitude. According to the hypothesis with γ′ fixed, the migratory direction will change when the dip changes. Given the hypothesis and the parameters of the earth's field theoretical migratory paths of birds between summer and winter quarters may be calculated (Figs. 8–11). The calculated tracks and the actually observed migratory routes agree well. This is also confirmed by radar and other observations of migratory directions in areas of different dip angles (Fig. 13). Displacing migrating birds to areas of smaller dip angles (= lower magnetic latitudes) results in predeterminable shifts in the birds migratory direction (Figs. 5, 6). The hypothesis also accounts for the so far unexplained orientation behaviour of transequatorial migrants under the magnetic equator.

A very simple model of this hypothetical compass mechanism may be based on the assumption of the sensor axis is supposed to correspond to the apparent angle of dip when moving in the migratory direction. In this position the difference between the apparent angle of dip and the angle of the sensor is zero. Any change in the direction of movement, however, will result in a difference leading to a response of an assumed receptor. When maintaining the zero difference the bird invariably sticks to its migratory course. The proposed mechanism is a null instrument unaffected by changes in field intensity and not depending on the measurement of absolute values.


Migratory Direction Magnetic Equator Magnetic Compass Magnetic Latitude Winter Quarter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen WH (1948) Bird migration and magnetic meridians. Science 108:708Google Scholar
  2. Batschelet E (1981) Circular statistics in biology. Academic Press, London New YorkGoogle Scholar
  3. Beck W (1984) Der Einfluß des Magnetfeldes auf den Zugverlauf des Trauerschnäppers. In: Varju, Schnitzler (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. Becker G, Speck U (1964) Untersuchungen über die Magnetfeldorientierung von Dipteren. Z Vergl Physiol 49:301–340Google Scholar
  5. Berthold P, Gwinner E, Klein H, Westrich P (1972) Beziehungen zwischen Zugunruhe und Zugablauf bei Gartengrasmücke und Mönchsgrasmücke (Sylvia borin und S. atricapilla). Z Tierpsychol 30:26–35Google Scholar
  6. Bookman M (1978) Sensitivity of the homing pigeon to an earthstrength magnetic field. Nature 267:340–342Google Scholar
  7. Casement MB (1966) Migration across the Mediterrenean observed by radar. Ibis 108:461–491Google Scholar
  8. Chapin JP (1932) The birds of the Belgish Congo, part I. Bull Am Mus Nat Hist 65:1–756Google Scholar
  9. Curry-Lindhal K (1981) Bird migration in Africa, vol 2. Academic Press, London New YorkGoogle Scholar
  10. Defense Mapping Agency Hydrographic Center (1975) Charts of the earth's magnetic fieldGoogle Scholar
  11. Dick WJ, Pienkowski MW, Waltner M, Minton CD (1976) Distribution and geographical origin of knot Calidris canutus wintering in Europe and Africa. Ardea 64:22–47Google Scholar
  12. Dobben WH van (1935) Vogeltrek over Nederland II. Org Club Ned Vogelkd 7:143–158Google Scholar
  13. Dobben WH van (1936) Vogeltrek over Nederland III. Org Club Ned Vogelkd 8:91–107Google Scholar
  14. Dobben WH van, Makkingk GF (1934) Vogeltrek over Nederland I. Org Club Ned Vogelkd 6:87–102Google Scholar
  15. Dorst J (1961) The migrations of birds. Heinemann, LondonGoogle Scholar
  16. Emlen S (1967) Migratory orientation in the indigo bunting, Passerina cyanea. Part I: The evidence for use of celestial cues. Auk 84:309–342. Part II: Mechanism of celestial orientation. Auk 84:463–489Google Scholar
  17. Emlen S (1970) The influence of magnetic information on the orientation of the indigo bunting, Passerina cyanea. Anim Behav 18:215–224Google Scholar
  18. Fliege G (1983) Das Zugverhaten des Stars in Mitteleuropa: Eine Analyse der Ringfunde. Dissertation, Univ KonstanzGoogle Scholar
  19. Geyr von Schweppenburg H (1922) Zur Theorie des Vogelzuges. J Ornithol 70:361–385Google Scholar
  20. Geyr von Schweppenburg H (1926) Die Zugwege von Lanius senator, collurio und mitor. J Ornithol 74:388–404Google Scholar
  21. Gwinner E (1968) Artspezifische Muster der Zugunruhe bei Laubsängern und ihre mögliche Bedeutung für die Beendigung des Zuges im Winterquartier. Z Tierpsychol 25:843–853Google Scholar
  22. Gwinner E (1974) Eudogenous temporal control of migratory restlessness in warblers. Naturwissenschaften 61:405–406Google Scholar
  23. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in the migratory direction of the garden warbler Sylvia borin. J Comp Physiol 125:267–273Google Scholar
  24. Kalmijn AJ (1978) Experimental evidence of geomagnetic orientation in elasmobranch fishes. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin Heidelberg New York, pp 347–355Google Scholar
  25. Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106Google Scholar
  26. Kiepenheuer J (1978a) Pigeon navigation and magnetic field. Naturwissenschaften 65:113–114Google Scholar
  27. Kiepenheuer J (1978b) Inversion of the magnetic field during transport: Its influence on the homing behavior of pigeons. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 135–142Google Scholar
  28. Kiepenheuer J (1980) The importance of outward journey information in the process of pigeon homing. Acta 17. Congr Int Ornithol, Berlin 1978, pp 593–598Google Scholar
  29. Kiepenheuer J (1982) The effect of magnetic anomalies on the homing behavior of pigeons: An attempt to analyse the problems involved In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 120–128Google Scholar
  30. Kiepenheuer J, Linsenmair KE (1965) Vogelzug an der nordafrikanischen Küste von Tunesien bis Rotes Meer nach Tagund Nachtbeobachtungen 1963 und 1964. Vogelwarte 23:80–94Google Scholar
  31. Klein HP, Berthold P, Gwinner E (1973) Der Zug europäischer Garten-und Mönchsgrasmücken (Sylvia borin, S. atricapilla). Vogelwarte 27:73–134Google Scholar
  32. Köhler KL (1978) Do pigeons use their eyes for navigation? Animal migration, navigation, and homing. Springer, Berlin Heidelberg Ney Work, pp 57–64Google Scholar
  33. Krätzig H, Schüz E (1936) Ergebnis der Versetzung ostbaltischer Stare ins Binnenland. Vogelzug 7:163–175Google Scholar
  34. Kramer G (1949) Über Richtungstendenzen bei der nächtlichen Zugunruhe gekäfigter Vögel. In: Mayr E, Schüz E (eds) Ornithologie als biologische Wissenschaft. Winter, Heidelberg, pp 269–283Google Scholar
  35. Kreithen ML, Keeton WT (1979) Attempts to condition homing pigeons to magnetic stimuli. J Comp Physiol 91:355–362Google Scholar
  36. Leaton BR (1965) JGRF charts (World magnetic survey). JAGA Bull 28:189–201Google Scholar
  37. Li KP, Wong HH, Woo WS (1964) Route of the seasonal migration of the oriental army worm moth in the eastern part of China. Acta Phytophyl Sin 3:101–110 (Rev in Rev Appl Entomol A 53:391)Google Scholar
  38. Lincoln C (1935) The migration of North American birds. US Dep Agric Circ 363:1–72Google Scholar
  39. Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z Vergl Physiol 60:219–243Google Scholar
  40. Lindauer M, Martin H (1972) Magnetic effect on dancing bees. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orient orientation and navigation. NASA, Washington, pp 559–567Google Scholar
  41. Lowery GH Jr, Newman RJ (1966) A continentwide view of bird migration on four nights in October. Auk 83:547–586Google Scholar
  42. Lukanus V (1922) Die Rätsel des Vogelzuges. Beyer, LangensalzaGoogle Scholar
  43. Marshall AJ (1956) The breeding cycle of the short tailed shearwater in relation to transequatorial migration and its environment. Proc Zool Soc (Lond) 127:481–510Google Scholar
  44. Mayr E, Meise H (1930) Theoretisches zur Geschichte des Vogelzuges. Vogelzug 1:149–172Google Scholar
  45. McClure HE (1974) Migration and survival of the birds of Asia. SEATO, BangkokGoogle Scholar
  46. Merkel FW, Fromme C (1958) Untersuchungen über das Orientierungsvermögen nächtlich ziehender Rotkehlchen, Erithacus rubecula. Naturwissenschaften 45:499–500Google Scholar
  47. Moreau RE (1961) Problems of Mediterranean-Saharan migration. Ibis 103:373–427, 580–623Google Scholar
  48. Moreau RE (1972) The Palaearctic-African bird migration systems, Head, London New YorkGoogle Scholar
  49. Nisbet ICT (1970) Autumn migration of the black poll warbler: evidence for long flight provided by regional survey. Bird Banding 41:207–240Google Scholar
  50. Olsson V (1958) Dispersal, migration, longevity and death causes of Strix uluco Buteo buteo, Ardea cinerea and Larus argentatus. Acta Vertebratica 1:91–189Google Scholar
  51. Perdeck AC (1958) Two types of orientation in migrating starlings Sturnus vulgaris L. and chaffinches, Fringilla coelebs L. as revealed by displacement experiments. Ardea 46:1–37Google Scholar
  52. Perdeck AC (1964) An experiment on the ending of autumn migration in starlings. Ardea 52:133–139Google Scholar
  53. Perdeck AC (1967) Orientation of starlings after displacement to Spain. Ardea 55:194–202Google Scholar
  54. Prater AJ (1980) Migration pattern of waders (Charidrii) in Europe. Acta 17. Congr Int Ornithol, Berlin 1978, pp 507–511Google Scholar
  55. Rabøl J (1972) Displacement experiments with night migrating passerines (1970). Z Tierpsychol 30:14–25Google Scholar
  56. Ralph CJ (1975) Age ratios, orientation and routes of land migrants in the northeastern United States. D Sc thesis, John Hopkins University, Baltimore, MdGoogle Scholar
  57. Reille A (1968) Essai de mise en évidence d'une sensibilité du pigeon voyageur au champs magnétique a l'aide d'une conditionnement nociceptif. J Physiol (Paris) 60:85–92Google Scholar
  58. Richardson WJ (1980) Autumn landbird migration in the western Atlantic Ocean as evident from radar. Acta 17. Congr Int Ornithol, Berlin 1978, pp 501–506Google Scholar
  59. Sauer F (1957) Die Sternorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin und curruca). Z Tierpsychol 14:29–70Google Scholar
  60. Schmidt-Koenig K (1979) Directions of migrating monarch butterflies (Danaus plexippus) in some parts of the eastern United States. Behav Proc 4:73–78Google Scholar
  61. Schüz E (1949) Die Spätauflassung ostpreussischer Jungstörche in Westdeutschland durch die Vogelwarte Rossitten 1933. Vogelwarte 15:63–78Google Scholar
  62. Schüz E (1950) Zur Frage der angeborenen Zugwege. Vogelwarte 15:219–226Google Scholar
  63. Schüz E (1971) Grundriß der Vogelzugskunde. Parey, HamburgGoogle Scholar
  64. Schüz E, Weigold H (1931) Atlas des Vogelzuges nach den Beringungsergebnissen bei paläarktischen Vögeln. Abh Vogelwarte Helgoland, BerlinGoogle Scholar
  65. Semm P, Schneider T, Vollrath L, Witschko W (1982) Magnetic sensitive pineal cells in pigeons. In: Papi F, Walraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 329–337Google Scholar
  66. Stresemann E (1927) Die Wanderungen der Rotschwanzwürger (Formenkreis Lanius cristatus). J Ornithol 75:68–85Google Scholar
  67. Studer-Thiersch A (1969) Das Zugverhalten schweizerischer Stare nach Ringfunden. Ornithol Beob 66:105–144Google Scholar
  68. Tinbergen N (1947) Over de Trekwegen van Vinken (Fringilla coelebs L.). Ardea 30:42–73Google Scholar
  69. Urquhart FA, Urquhart NR (1978) Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus) in North America to the overwintering site in the Neovulcanic Plateau of Mexico. Can J Zool 56:1759–1764Google Scholar
  70. Walcott B, Walcott C (1982) A search for magnetic field receptors in animals. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 338–343Google Scholar
  71. Walcott C (1978) Anomalies in the earth's magnetic field increase the scatter of pigeon's vanishing bearings. In: Schmidt-Koenig K, Keeton, W (eds) Animal migration navigation and homing. Springer, Berlin Heidelberg New York, pp 143–151Google Scholar
  72. Walcott C, Green RP (1974) Orientation of homing pigeons altered by change in the direction of an applied magnetic field. Science 184:180–182Google Scholar
  73. Wallraff HG (1960) Does celestial navigation exist in animals? Cold Spring Harbor Symp Quant Biol 25:451–461Google Scholar
  74. Wallraff HG, Kiepenheuer J (1963) Migracion y orientacion en aves: observaciones en otoño en el sur-oeste de Europa. Ardeola 8:19–40Google Scholar
  75. Williams TC, Williams JM, Ireland LC, Teal JM (1977) Autumnal bird migration over the western north Atlantic ocean. Am Birds 31:251–267Google Scholar
  76. Wiltschko R, Wiltschko W (1978) Evidence for the use of outward journey information in homing pigeons. Naturwissenschaften 65:112–113Google Scholar
  77. Wiltschko W (1972) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z Tierpsychol 25:537–558Google Scholar
  78. Wiltschko W (1972) Magnetic compass of European robins. Science 176:62–64Google Scholar
  79. Wiltschko W (1974) Der Magnetkompaß der Gartengrasmücke (Sylvia borin). J Ornithol 115:1–7Google Scholar
  80. Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night migrating birds. J Comp Physiol 109:91–99Google Scholar
  81. Wolff WJ (1966) Migration of teal ringed in the Netherlands. Ardea 54:230–270Google Scholar
  82. Wolff WJ (1970) Goal orientation versus one direction orientation in the teal Anas c. crecca during autumn migration. Ardea 58:132–141Google Scholar
  83. Zink G (1980) Räumliche Zugmuster europäischer Zugvögel. Acta 17. Congr Int Ornithol, Berlin 1979, pp 512–516Google Scholar
  84. Zink G (1973/75/81) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel, Bd 1–3. Vogelzug Verlag, MoggingenGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Jacob Kiepenheuer
    • 1
  1. 1.Abteilung Verhaltensphysiologie am Institut für Zoophysiologie, Biologie IIIUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations