Human Genetics

, Volume 78, Issue 4, pp 363–368 | Cite as

Assignment of the complement serine protease genes C1r and C1s to chromosome 12 region 12p13

  • Nguyen Van Cong
  • M. Tosi
  • M. S. Gross
  • O. Cohen-Haguenauer
  • C. Jegou-Foubert
  • M. F. de Tand
  • T. Meo
  • J. Frézal
Original Investigations

Summary

C1r and C1s are distinct, but structurally and functionally similar, serine protease zymogens responsible for the enzymatic activity of the first component of complement (C1). Recent comparisons indicate a significant degree of sequence similarity between C1r and C1s and support the hypothesis that they are related by gene duplication. Complementary DNA probes for human C1r and C1s do not cross-hybridize even at mild stringency conditions and are therefore genespecific. Using a panel of 25 human-rodent cell hybrids, we have independently assigned the C1r and the C1s genes to chromosome 12. In situ hybridization analyses were consistent with these assignments, showing in addition that both C1r and C1s are located on the short arm of the chromosome in the region p13. These data suggest that the homologous C1r and C1s genes have remained closely linked after duplication of a common ancestor. The C1r and C1s loci also provide useful polymorphic DNA markers for the short arm of chromosome 12.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arlaud GJ, Colomb MG, Gagnon J (1987) A functional model of the human C1 complex. Immunol Today 8:106–111Google Scholar
  2. Camargo M, Cervenka J (1982) Patterns of DNA replication of human chromosomes. II. Replication map and replication model. Am J Hum Genet 34:757–780Google Scholar
  3. Carter PE, Dunbar B, Forthergill JE (1984) Structure and activity of C1r and C1s. Philos Trans R Soc Lond [Biol] 306:293–299Google Scholar
  4. Chen TR, McMorris FA, Creagan R, Ricciuti F, Tischfield J, Ruddle FH (1973) Assignment of the genes for malate oxidoreductase decarboxylating to chromosome 6 and peptidase B and lactate dehydrogenase B to chromosome 12 in man. Am J Hum Genet 25: 200–207Google Scholar
  5. Cohen-Haguenauer O, Tosi M, Meo T, Nguyen Van Cong, Frézal J (1986) Assignment of human complement C1r and C1s genes to chromosome 12 and of human C1-esterase inhibitor gene to chromosome 11. 7th International Congress of Human Genetics, Berlin, 1986, part II, p 617 (abstr)Google Scholar
  6. Cooper NR (1985) The classical complement pathway: activation and regulation of the first complement component. Adv Immunol 37: 151–216Google Scholar
  7. Creagan RP, Kucherlapati R, Tischfield J, Chen S, Ricciuti F, Ruddle FH (1973a) Chromosome assignment in man of the genes for isocitrate dehydrogenase (IDH and malate oxidoreductase). In Vitro 8:444Google Scholar
  8. Creagan R, Tischfield J, McMorris FA, Chen S, Hirschi M, Chen TR, Ricciuti F, Ruddle FH (1973b) Assignment of the genes for human peptidase A to chromosome 18 and cytoplasmic glutamic oxaloacetate transaminase to chromosome 10 using somatic cell hybrids. Cytogenet Cell Genet 12:187–198Google Scholar
  9. Dutrillaux B, Lejeune J (1971) Sur une nouvelle technique d'analyse du caryotype humain. CR Acad Sci [D] (Paris) 272:2638–2640Google Scholar
  10. Franke U (1974) Regional localization of the human genes for malate dehydrogenase 1 and isocitrate dehydrogenase 1 on chromosome 2 by interspecific hybridization using human cells with the balanced reciprocal translocation t(1,2)(q32,q13). Birth Defects 11: 138–142Google Scholar
  11. Gee PA, Douglas GR, McAlpine PJ, Hamerton JL (1973) Synteny of the IDH1 and MDH1 gene loci in man and probable assignment to chromosome 2. Birth Defects 10:89Google Scholar
  12. Hamerton JL, Mohandes T, McAlpine PJ, Douglas GR (1974) Assignment of three human gene loci to regions of chromosome 2. Birth Defects 11:176–178Google Scholar
  13. Jongsma APM, Los WRT, Hagemeijer J (1973) Evidence for synteny between the human loci for triose phosphate isomerase, lactate dehydrogenase B, peptidase B and the regional mapping of these loci on chromosome 12. Birth Defects 10:106–107Google Scholar
  14. Journet A, Tosi M (1986) Cloning and sequencing of full-length cDNA encoding the precursor of human complement component C1r. Biochem J 240:783–787Google Scholar
  15. Lewis WHP, Harris H (1967) Human red cell peptidases. Nature 215:351–355Google Scholar
  16. Leytus P, Kurachi K, Sakariassen KS, Davie EW (1986) Nucleotide sequence of the cDNA coding for human complement C1r. Biochemistry 25:4855–4863Google Scholar
  17. Loos M, Heinz HP (1986) Component deficiencies 1. The first component: C1q, C1r, C1s. Prog Allergy 39:212–231Google Scholar
  18. Mattei MG, Philip N, Passage E, Moisan JL, Mattei JF (1985) DNA probe localization at 18p113 band by in situ hybridization and identification of a small supernumerary chromosome. Hum Genet 69:268–271Google Scholar
  19. McAlpine PJ, Chudley AE, Ray M, Hamerton JL (1973) The peptidase A gene locus and human autosome 18. Am J Hum Genet 25:49A (abstr)Google Scholar
  20. Meera Khan P (1971) Enzyme electrophoresis on cellulose acetate gel: zymogram pattern in man-mouse and man-Chinese hamster somatic cell hybrids. Arch Biochem Biophys 145:470–483Google Scholar
  21. Mendelsohn ML, Mayall BH, Bogart E, Moore DH, Perry BH (1973) DNA content and DNA-based centromeric index of the 24 human chromosomes. Science 179:1126–1129Google Scholar
  22. Nguyen Van Cong, Weil D, Finaz C, Cohen-Haguenauer O, Gross MS, Jegon Foubert C, Tand MF de, Cochet C, Grouchy J de, Frézal J (1986) Panel of twenty-five independent man-rodent hybrids for human genetic marker mapping. Ann Génét (Paris) 29: 20–26Google Scholar
  23. Reid KBM, Porter RR (1981) The proteolytic activation system of complement. Ann Rev Biochem 50:433–464Google Scholar
  24. Schumaker WN, Zavodszky P, Poon PH (1987) Activation of the first component of complement. Ann Rev Immunol 5:21–42Google Scholar
  25. Sim RB, Porter RR, Reid KBM, Gigli I (1977) The structure and enzymic activities of the C1r and C1s subcomponents of C1, the first component of human serum complement. Biochem J 163:219–227Google Scholar
  26. Tosi M, Journet A, Colomb M, Meo T (1985) Construction, isolation and characterization of cDNA clones encoding human C1r and C1s. Complement 2:79Google Scholar
  27. Tosi M, Journet A, Lyonnet D, Colomb M, Meo T (1986) Molecular cloning of the complement serine proteases C1r and C1s and of their inhibitor C1-esterase inhibitor. In: Peeters H (ed) Protides of the biological fluids, vol 34. Pergamon Press, Oxford, pp 453–456Google Scholar
  28. Tosi M, Duponchel C, Meo T, Julier C (1987) Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r. Biochemistry 26:8516–8524Google Scholar
  29. Van Someren H, Beijersbergen Van Henegouven H, Los W, Wurzer-Figurelli E, Doppert B, Vervloet M, Meera Khan P (1974) Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man-chinese hamster somatic cell hybrids. Humangenetik 25: 189–201Google Scholar
  30. Weil D, Nguyen Van Cong, Finaz C, Rebourcet R, Cochet C, Grouchy J de, Frézal J (1977) Localisation régionale des gènes humains IDHs, MDHs, PGK, αGAL, G6PD par l'hybridation cellulaire interspécifique. Hum Genet 36:205–211Google Scholar
  31. Zabel BU, Naylor SL, Sakaguchi AY, Bell GI, Shows TB (1983) High-resolution chromosomal localization of human genes for amylase, proopeomelanocortin, somatostatin and a DNA fragment (D3S1) by in situ hybridization. Proc Natl Acad Sci USA 80: 6932–6936Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Nguyen Van Cong
    • 1
  • M. Tosi
    • 2
  • M. S. Gross
    • 1
  • O. Cohen-Haguenauer
    • 1
  • C. Jegou-Foubert
    • 1
  • M. F. de Tand
    • 1
  • T. Meo
    • 2
  • J. Frézal
    • 1
  1. 1.Clinique et Unité de Recherches de Génétique Médicale (INSERM U12)Hôpital des Enfants MaladesParis Cédex 15France
  2. 2.Unité d'Immunogénétique (INSERM U276)Institut PasteurParis Cédex 15France

Personalised recommendations