Human Genetics

, Volume 67, Issue 4, pp 414–418 | Cite as

Diagnosis of infantile and juvenile forms of GM2 gangliosidosis variant 0. residual activities toward natural and different synthetic substrates

  • H. -J. Kytzia
  • U. Hinrichs
  • K. Sandhoff
Original Investigations


p-Nitrophenyl-6-sulfo-2-acetamido-2-deoxy-β-d-glucopyranoside, which is known to be a specific substrate for human hexosaminidase A, has recently been used successfully for diagnosis of variants B and B1 of GM2-gangliosidosis (Fuchs et al. 1983; Kytzia et al. 1983; Li et al. 1983). However, it is hydrolyzed by hexosaminidase S as well and is therefore not suitable for detection of patients with variant 0, who reach the normal range of activity toward this substrats. Assay of ganglioside GM2 cleaving activity in fibroblast extracts in the presence of the natural GM2 activator protein reveals residual hexosaminidase A activities of less than 2% of normal controls in two infantile and up to 7.5% in two juvenile patients with variant 0.


Internal Medicine Normal Control Metabolic Disease Specific Substrate Activator Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Conzelmann E, Sandhoff K (1978) AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci USA 75:3979–3983Google Scholar
  2. Conzelmann E, Sandhoff K (1979) Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe-Seylers Z Physiol Chem 360: 1837–1849Google Scholar
  3. Conzelmann E, Sandhoff K (1983/84) Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev Neurosci 6:58–71Google Scholar
  4. Conzelmann E, Kytzia HJ, Navon R, Sandhoff K (1983) Ganglioside GM2 N-acetyl-β-d-galactosaminidase activity in cultured fibroblasts of late-infantile and adult GM2 gangliosidosis patients and of healthy probands with low hexosaminidase level. Am J Hum Genet 35:900–913Google Scholar
  5. Dreyfus JC, Poenaru L, Svennerholm L (1975) Absence of hexosaminidase A and B in a normal adult. N Engl J Med 292: 61–63Google Scholar
  6. Fuchs W, Navon R, Kaback M, Kresse H (1983) Tay-Sachs disease: one-step assay of β-N-acetylhexosaminidase in serum with a sulphated chromogenic substrate. Clin Chim Acta 133:253–261Google Scholar
  7. Galjaard H (1980) Genetic metabolic diseases. Early diagnosis and prenatal analysis. Elsevier, Amsterdam, pp 277–279Google Scholar
  8. Geiger B, Arnon R, Sandhoff K (1977) Immunochemical and biochemical investigation of hexosaminidase S. Am J Hum Genet 29: 508–522Google Scholar
  9. Goldman JE, Yamanaka T, Rapin I, Adachi M, Suzuki K, Suzuki K (1980) The AB-variant of GM2-gangliosidosis. Clinical, biochemical and pathological studies of two patients. Acta Neuropathol (Berl) 52:189–202Google Scholar
  10. Hasilik A, Neufeld E (1980) Biosynthesis of lysosomal enzymes in fibroblasts. J Biol Chem 255:4937–4945Google Scholar
  11. Inui K, Grebner E, Jackson L, Wenger D (1983) Juvenile GM2 gangliosidosis (AMB variant): Inability to activate hexosaminidase A by activator protein. Am J Hum Genet 35:551–564Google Scholar
  12. Kresse H, Fuchs W, Glössl J, Holtfrerich D, Gilberg W (1981) Liberation of N-acetylglucosamine-6-sulfate by human β-N-acetylhexosaminidase A. J Biol Chem 256:12926–12932Google Scholar
  13. Kytzia HJ, Hinrichs U, Maire I, Suzuki K, Sandhoff K (1983) Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity. EMBO J 2:1201–1205Google Scholar
  14. Li SC, Hirabayashi Y, Li YT (1981) A new variant of type-AB GM2-gangliosidosis. Biochem Biophys Res Commun 101:479–485Google Scholar
  15. Li YT, Hirabayashi Y, Li SC (1983) Differentiation of two variants of type-AB GM2-gangliosidosis using chromogenic substrates. Am J Hum Genet 35:520–522Google Scholar
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  17. MacLeod P, Wood S, Jan J, Applegarth D, Dolman C (1977) Progressive cerebellar ataxia, spasticity, psychomotor retardation, and hexosaminidase deficiency in a 10-year-old child: juvenile Sandhoff discase. Neurology 27:571–573Google Scholar
  18. Mahuran D, Tsui F, Gravel R, Lowden A (1982) Evidence for two dissimilar polypeptide chains in the β2 subunit of hexosaminidase. Proc Natl Acad Sci USA 79:1602–1605Google Scholar
  19. O'Brien JS (1983) The gangliosidoses. In: Stanbury J, Wyngaarden J, Fredrickson D, Goldstein J, Brown M (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 945–969Google Scholar
  20. Sandhoff K, Christomanou H (1979) Biochemistry and genetics of gangliosidoses. Hum Genet 50:107–143Google Scholar
  21. Sandhoff K, Harzer K, Wässle W, Jatzkewitz H (1971) Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem 18:2469–2489Google Scholar
  22. Thomas G, Raghavan S, Kolodny E, Frisch A, Neufeld E, O'Brien J, Reynolds L, Miller C, Shapiro J, Kazazian H, Heller R (1982) Nonuniform deficiency of hexosaminidase A in tissues and fluids of two unrelated individuals. Pediatr Res 16:232–237Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. -J. Kytzia
    • 1
  • U. Hinrichs
    • 1
  • K. Sandhoff
    • 1
  1. 1.Institut für Organische Chemie und Biochemie der Universität BonnBonn 1Germany

Personalised recommendations