Archives of Microbiology

, Volume 156, Issue 2, pp 105–110 | Cite as

Mixotrophy in the termite gut acetogen, Sporomusa termitida

  • John A. Breznak
  • Jodi Switzer Blum
Original Papers


Cell suspensions of H2/CO2-grown Sporomusa termitida catalyzed an H2-supported synthesis of acetate from CO2 at rates of about 1 μmol acetate x h-1 x mg protein-1. Cells pre-grown on methanol, mannitol, lactate, or glycine also displayed H2-supported acetogenesis from CO2, although at rates 5–85% that of H2/CO2-grown cells. With methanol-grown cell suspensions: the presence of methanol greatly stimulated the rate of H2-supported conversion of 14CO2 to 14C-acetate (which became labeled mainly in the COOH-group); and like-wise the presence of H2 stimulated the conversion of 14CH3OH+CO2 to 14C-acetate (which became labeled mainlyan the CH3-group). Analogous stimulatory effects were observed for cell suspensions pre-grown on methanol + CO2+H2. Furthermore, when H2 (+CO2) was included as a growth substrate with either methanol or lactate: both substrates were used simultaneously; there was no diauxie in the growth of cells or in acetate production; and the molar growth yield of S. termitida was close to that predicted from summation of the yields observed when grown with each substrate alone. These data indicated that S. termitida can grow by mixotrophy, i.e. by the simultaneous use of H2/CO2 and organic compounds for energy. Results are discussed in light of the ability of H2/CO2 acetogens to outprocess methanogens in H2 consumption in the hindgut fermentation of wood-feeding termites.

Key words

Mixotrophy Termite Gut microbe Acetogenic anaerobe Hydrogen Sporomusa termitida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braun K, Gottschalk G (1981) Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch Microbiol 128: 294–298CrossRefGoogle Scholar
  2. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52: 623–630PubMedPubMedCentralGoogle Scholar
  3. Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., and H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150: 282–288CrossRefGoogle Scholar
  4. Cole SC, Kuwahara SS (1984) Acetylacetone method for glycine improved by use of ammonium citrate as buffer. Clin Chem 30: 1260–1261PubMedGoogle Scholar
  5. Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50: 595–601PubMedPubMedCentralGoogle Scholar
  6. Cookson LJ (1988) The site and mechanism of 14C-lignin degradation by Nasutitermes exitiosus. J Insect Physiol 34: 409–414CrossRefGoogle Scholar
  7. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the electron acceptor. Arch Microbiol 149: 350–357CrossRefGoogle Scholar
  8. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms, chapter 9. Wiley, New YorkGoogle Scholar
  9. Eutick ML, O'Brien RW, Slaytor M (1978) Bacteria from the gut of Australian termites. Appl Environ Microbiol 35: 823–828PubMedPubMedCentralGoogle Scholar
  10. Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151: 399–406CrossRefGoogle Scholar
  11. Heijthuijsen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in cocultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol Ecol 38: 57–64CrossRefGoogle Scholar
  12. Kane MD, Breznak JA (1991a) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156: 91–98CrossRefGoogle Scholar
  13. Kane MD, Breznak JG (1991b) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156: 99–104CrossRefGoogle Scholar
  14. Kerby R, Zeikus JG (1987) Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum. J Bacteriol 169: 2063–2068CrossRefGoogle Scholar
  15. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40: 415–450CrossRefGoogle Scholar
  16. Lovley DR (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl Environ Microbiol 49: 1530–1531PubMedPubMedCentralGoogle Scholar
  17. Lovley DR, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48: 81–87PubMedPubMedCentralGoogle Scholar
  18. Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Ann Rev Microbiol 32: 433–468CrossRefGoogle Scholar
  19. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms, chapter 8. Wiley, New YorkGoogle Scholar
  20. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45: 1602–1613PubMedPubMedCentralGoogle Scholar
  21. Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed), Biology of anaerobic microorganisms, chapter 12. Wiley, New YorkGoogle Scholar
  22. Potrikus CJ, Breznak JA (1980) Anaerobic degradation of uric acid by gut bacteria of termites. Appl Environ Microbiol 40: 125–132PubMedPubMedCentralGoogle Scholar
  23. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180PubMedPubMedCentralGoogle Scholar
  24. Wolin MJ (1981) Fermentation in the rumen and human large intestine. Science 213: 1463–1468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • John A. Breznak
    • 1
    • 2
  • Jodi Switzer Blum
    • 1
    • 2
  1. 1.Department of MicrobiologyMichigan State UniversityMIEast LansingUSA
  2. 2.Center for Microbial EcologyMichigan State UniversityMIEast LansingUSA

Personalised recommendations