Archives of Microbiology

, Volume 156, Issue 2, pp 91–98 | Cite as

Acetonema longum gen.nov.sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis

  • Matthew D. Kane
  • John A. Breznak
Original Papers


A previously undescribed, H2-oxidizing CO2-reducing acetogenic bacterium was isolated from gut contents of the wood-feeding termite, Pterotermes occidentis. Cells of representative strain APO-1 were strictly anaerobic, Gram-negative, endospore-forming motile rods which measured 0.30–0.40×6–60 μm. Cells were catalase positive, oxidase negative, and had 51.5 mol percent G+C in their DNA. Optimum conditions for growth on H2+CO2 were at 30–33°C and pH (initial) 7.8, and under these conditions cells formed acetate according to the equation: 4 H2+2 CO2→CH3COOH+2 H2O. Other energy sources supporting good growth of strain APO-1 included glucose, ribose, and various organic acids. Acetate and butyrate were major fermentation products from most organic compounds tested, however propionate, succinate, and 1,2-propanediol were also formed from some substrates. Based on comparative analysis of 16S rRNA nucleotide sequences, strain APO-1 was related to, but distinct from, members of the genus Sporomusa. Moreover, physiological and morphological differences between strain APO-1 and the six known species of Sporomusa were significant. Consequently, it is proposed herewith that a new genus, Acetonema, be established with strain APO-1 as the type strain of the new species, Acetonema longum. A. longum may contribute to the nutrition of P. occidentis by forming acetate, propionate and butyrate, compounds which are important carbon and energy sources for termites.

Key words

Acetonema longum Termite Pterotermes occidentis Gut microbe Hydrogen Acetogenic anaerobe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breznak JA, Pankratz HS (1977) In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl Environ Microbiol 33:406–426PubMedPubMedCentralGoogle Scholar
  2. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedPubMedCentralGoogle Scholar
  3. Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288CrossRefGoogle Scholar
  4. Cline E (1969) Spectrophotometric determination of hydrogensulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  5. Costilow R (1981) Biophysical factors in growth. In: Gerhardt P (ed) Manual of methods for general bacteriology, chapter 6. American Society for Microbiology, Washington, DCGoogle Scholar
  6. Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426CrossRefGoogle Scholar
  7. DeSoete G (1973) A least-squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626CrossRefGoogle Scholar
  8. Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754PubMedPubMedCentralGoogle Scholar
  9. Eichler B, Schink B (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152CrossRefGoogle Scholar
  10. Ghazvinizadeh H, Turtura GC, Zambonelli C (1972) The fermentation of L-rhamnose by clostridia. Ann Microbiol Enzimol 22:155–158Google Scholar
  11. Gottschalk G (1986) Bacterial metabolism. Springer, Berlin Heidelberg New York, 359 ppCrossRefGoogle Scholar
  12. Green CJ, Stewart GC, Hollis MA, Vold BS, Bott KF (1985) Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrn B. Gene 37:261–266CrossRefGoogle Scholar
  13. Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151:399–406CrossRefGoogle Scholar
  14. Hanson RS, Phillips JA (1981) Chemical composition. In: Gerhardt P (ed) Manual of methods for general bacteriology, chapter 17. American Society for Microbiology, Washington, DCGoogle Scholar
  15. Hermann M, Popoff M-R, Sebald M (1987) Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int J Syst Bacteriol 37:93–101CrossRefGoogle Scholar
  16. Hungate RE (1969) A roll tube method for the cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol. 3B, Academic Press, New York, pp. 117–132Google Scholar
  17. Jukes TH, Cantor CR (1969), Evolution of protein molecules, p. 21–132. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New YorkCrossRefGoogle Scholar
  18. Kluyver AJ, Schnellen CH (1937) Über die Vergärung von Rhamnose. Enzymologia 4:7–12Google Scholar
  19. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin M, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959CrossRefGoogle Scholar
  20. Lewis JC (1967) Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate. Anal Biochem 19:327–337CrossRefGoogle Scholar
  21. Ljungdahl LO (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450CrossRefGoogle Scholar
  22. Mannarelli B (1988) Deoxyribonucleic acid relatedness among strains of the species Butyrivibrio fibrosolvens. Int J Syst Bacteriol 38:340–347CrossRefGoogle Scholar
  23. Messer AC, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18:275–284CrossRefGoogle Scholar
  24. Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396CrossRefGoogle Scholar
  25. Montgomery L, Flesher B, Stahl D (1988) Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int J Syst Bacteriol 38:430–435CrossRefGoogle Scholar
  26. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613PubMedPubMedCentralGoogle Scholar
  27. Ollivier B, Cordruwisch R, Lombardo A, Garcia J-L (1985) Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142:307–310CrossRefGoogle Scholar
  28. O'Brien RW, Breznak JA (1984) Enzymes of acetate and glucose metabolism in termites. Insect Biochem 14:639–643CrossRefGoogle Scholar
  29. Oren A, Pohla H, Stackebrandt E (1987) Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui. System Appl Microbiol 9:239–246CrossRefGoogle Scholar
  30. Parker JH, Smith GA, Frederickson HL, Vestal JR, White DC (1982) Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide Lipid A, for Gram negative bacteria in sediments. Appl Environ Microbiol 44:1170–1177PubMedPubMedCentralGoogle Scholar
  31. Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol 33:192–399Google Scholar
  32. Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P (ed) Manual of methods for general bacteriology, chapter 20. American Society for Microbiology, Washington, DCGoogle Scholar
  33. Stackebrandt E, Pohla H, Droppenstedt R, Hippe H, Woese CR (1985) 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of Gram-positive eubacteria. Arch Microbiol 143:270–276CrossRefGoogle Scholar
  34. To LP, Margulis L, Chase D, Nutting WL (1980) The symbiotic microbial community of the Sonoran Desert termite: Pterotermes occidentis. BioSystems 13:109–137CrossRefGoogle Scholar
  35. Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, VanEtten J, Maniloff J, Woese CR (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467CrossRefGoogle Scholar
  36. Wiegel G, Quandt L (1982) Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J Gen Microbiol 128:2261–2270PubMedGoogle Scholar
  37. Woese CR, Debruner-Vossbrink B, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram positive bacteria: possible photosynthetic ancestry. Science 229:762–765CrossRefGoogle Scholar
  38. Zhao H, Yang D, Woese CR, Bryant MP (1990) Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Matthew D. Kane
    • 1
    • 2
  • John A. Breznak
    • 1
    • 2
  1. 1.Department of MicrobiologyMichigan State UniversityEast LansingUSA
  2. 2.Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations