Advertisement

Archives of Microbiology

, Volume 156, Issue 2, pp 81–90 | Cite as

A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov.

  • Thomas M. Wahlund
  • Carl R. Woese
  • Richard W. Castenholz
  • Michael T. Madigan
Original Papers

Abstract

Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.

Key words

Chlorobium tepidum Photosynthesis Green sulfur bacteria Chlorosomes Bacteriochlorophyll Thermophily Hot springs 16S rRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach-Richter LR, Gupta JR, Stetter KO, Woese CR (1987) Were the original eubacteria thermophiles? Syst Appl Microbiol 9:34–39CrossRefGoogle Scholar
  2. Bauld J, Brock TD (1973) Ecological studies of Chloroflexis, a gliding photosynthetic bacterium. Arch Mikrobiol 92:267–284CrossRefGoogle Scholar
  3. Beiji A, Izard D, Gavini F, Leclerc H, Leseine-Delstanche M, Krembel J (1987) A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal Biochem 162:18–23CrossRefGoogle Scholar
  4. Beyer P, Falk H, Kleinig H (1983) Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities. Arch Microbiol 134:60–63CrossRefGoogle Scholar
  5. Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci (USA) 80:3963–3965CrossRefGoogle Scholar
  6. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  7. Brosius J, Palmer ML, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805CrossRefGoogle Scholar
  8. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504PubMedPubMedCentralGoogle Scholar
  9. Castenholz RW (1973) The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol Occanogr 18:863–876CrossRefGoogle Scholar
  10. Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105CrossRefGoogle Scholar
  11. Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 243–255CrossRefGoogle Scholar
  12. Castenholz RW, Bauld J, Jørgensen BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol Ecol 74:325–336CrossRefGoogle Scholar
  13. Castenholz RW, Pierson BK (1981) Isolation of members of the family Chloroflexaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 290–298CrossRefGoogle Scholar
  14. Cohen-Bazire G, Sistrom WR (1966) The procaryotic photosynthetic apparatus. In: Vernon LP, Seeley GR (eds) The chlorophylls. Academic Press, New York, pp 313–341CrossRefGoogle Scholar
  15. DeSoete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626CrossRefGoogle Scholar
  16. Gemerden Hvan (1986) The production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146:52–56CrossRefGoogle Scholar
  17. Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6:152–156CrossRefGoogle Scholar
  18. Giovannoni SJ, Revsbech NP, Ward DM, Castenholz RW (1987) Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch Microbiol 147:80–87CrossRefGoogle Scholar
  19. Gloe A, Pfennig N, Brockmann HJr, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109CrossRefGoogle Scholar
  20. Gloe A, Risch N (1978) Bacteriochlorophyll c s, a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118:153–156CrossRefGoogle Scholar
  21. Green CJ, Stewart GC, Hollis MA, Vold BS, Bott KF (1985) Nucleotide sequence of Bacillus subtilis ribosomal RNA operon, rrnB. Gene 37:261–266CrossRefGoogle Scholar
  22. Heda GD, Madigan MT (1986) Aspects of nitrogen fixation in Chlorobium. Arch Microbiol 143:330–336CrossRefGoogle Scholar
  23. Holo H, Brock-Due M, Ormerod JG (1985) Glycolipids and the structure of chlosomes in green bacteria. Arch Microbiol 143:94–99CrossRefGoogle Scholar
  24. Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154CrossRefGoogle Scholar
  25. Jukes TH, Cantor R (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  26. Kelly DP (1974) Growth and metabolism of the obligate photolithotroph Chlorobium thiosulfatophilum in the presence of added organic nutrients. Arch Microbiol 100:163–178CrossRefGoogle Scholar
  27. Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154CrossRefGoogle Scholar
  28. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959CrossRefGoogle Scholar
  29. Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225:313–315CrossRefGoogle Scholar
  30. Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36:222–227CrossRefGoogle Scholar
  31. Madigan MT (1988) Microbiology, physiology and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111Google Scholar
  32. Madigan MT, Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122:782–784PubMedPubMedCentralGoogle Scholar
  33. Madigan MT, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78PubMedPubMedCentralGoogle Scholar
  34. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  35. Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51CrossRefGoogle Scholar
  36. Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1635–1709Google Scholar
  37. Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24CrossRefGoogle Scholar
  38. Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305CrossRefGoogle Scholar
  39. Pierson BK, Castenholz RW (1991) The anoxygenic phototrophic bacteria (Family Chloroflexaceae). In: Balows A, Trüper HG, Dowrkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd ed., Springer, Berlin Heidelberg New York (in press)Google Scholar
  40. Pierson BK, Giovannoni SJ, Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47:576–584PubMedPubMedCentralGoogle Scholar
  41. Pierson BK, Giovannoni SJ, Stahl DA, Castenholz RW (1985) Heliothrix oregonensis gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167CrossRefGoogle Scholar
  42. Resnick S, Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65:165–170CrossRefGoogle Scholar
  43. Ryter A, Kellenberger E, Birch-Andersen A, Maaløe O (1958) Etude au microscope électronique de plasma contenant de l'acide desoxyribonucléique I. Les nucleoides des bactéries en croissance active. Z Naturforsch 136:597–605CrossRefGoogle Scholar
  44. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467CrossRefGoogle Scholar
  45. Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain OK-70-fl and Chlorobium limicola, f. thiosulfatophilum strain 6230. Arch Microbiol 124: 21–31CrossRefGoogle Scholar
  46. Shiea J, Brassell SC, Ward DM (1991) Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria. Org Geochem 17:309–319CrossRefGoogle Scholar
  47. Stanier RY, Smith JHC (1960) The chlorophylls of green bacteria. Biochim Biophys Acta 41:478–484CrossRefGoogle Scholar
  48. Stolz JF, Fuller RC, Redlinger TE (1990) Pigment-protein diversity in chlorosomes of green phototrophic bacteria. Arch Microbiol 154:422–427CrossRefGoogle Scholar
  49. Trüper HG (1978) Sulfur metabolism. In Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 269–274Google Scholar
  50. Wang J, Brune DC, Blakenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015:457–463CrossRefGoogle Scholar
  51. Ward DM, Weller R, Shiea J, Castenholz RW, Cohen Y (1989) Host spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenberg E (eds) Microbial mats-physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 3–15Google Scholar
  52. Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, vanEtten J, Maniloff J, Woese CR (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467CrossRefGoogle Scholar
  53. Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151CrossRefGoogle Scholar
  54. Woese CR, Kandler O, Wheelis ML (1990a) Toward a natural system of organisms: Proposals for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579CrossRefGoogle Scholar
  55. Woese CR, Mandelco L, Yang D, Gherna R, Madigan MT (1990b) The case for relationship of the flavobacteria and their relatives to the green sulfur bacteria. Syst Appl Microbiol 13:258–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Thomas M. Wahlund
    • 1
  • Carl R. Woese
    • 2
  • Richard W. Castenholz
    • 3
  • Michael T. Madigan
    • 1
  1. 1.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA
  2. 2.Department of MicrobiologyUniversity of IllinoisUrbanaUSA
  3. 3.Department of BiologyUniversity of OregonEugeneUSA

Personalised recommendations