Molecular and General Genetics MGG

, Volume 230, Issue 1–2, pp 161–169 | Cite as

Organization and characterization of three genes involved in d-xylose catabolism in Lactobacillus pentosus

  • B. Christien Lokman
  • Pieter van Santen
  • Jan C. Verdoes
  • Jaap Krüse
  • Rob J. Leer
  • Mark Posno
  • Peter H. Pouwels
Article

Summary

A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilisd-xylose isomerase (68% and 77%, respectively), and to E. colid-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosusd-xylose isomerase belongs to the same similarity group as B. subtilis and E. colid-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5′-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3′ is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.

Key words

Regulatory protein d-xylose isomerase d-xylulose kinase Amino acid comparison NMR analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amore R, Hollenberg CP (1989) Xylose isomerase from Actinoplanes missouriensis: primary structure of the gene and the protein. Nucleic Acids Res 17:7515Google Scholar
  2. Aslanidis C, Schmitt R (1990) Regulatory elements of the raffinose operon: nucleotide sequences of operator and repressor genes. J Bacteriol 172:2178–2180Google Scholar
  3. Batt CA, Jamieson AC, Vandeyar MA (1990) Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase. Proc Natl Acad Sci USA 87:618–622Google Scholar
  4. Chassy BM, Flickinger JL (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 44:173–177Google Scholar
  5. deMan JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135Google Scholar
  6. Dodd IB, Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026Google Scholar
  7. Drocourt D, Bejar S, Calmels T, Reynes JP, Tiraby G (1988) Nucleotide sequence of the xylose isomerase gene from Streptomyces violaceoniger. Nucleic Acids Res 16:9337Google Scholar
  8. Efthymiou C, Hansen CA (1962) An antigenic analysis of Lactobacillus acidophilus. J Infect Dis 110:258–267Google Scholar
  9. Friedman PJ, Imperiale MJ, Adhya SL (1987) RNA 3′-end formation in the control of gene expression. Annu Rev Genet 21:453–488Google Scholar
  10. Gärtner D, Geissendörfer M, Hillen W (1988) Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol 170:3102–3109Google Scholar
  11. Gold L, Pribnow D, Schneider T, Shinedling S, Singer BS, Stormo G (1981) Translation initiation in prokaryotes. Annu Rev Microbiol 35:365–403Google Scholar
  12. Graves MC, Rabinowitz JC (1986) In vivo and in vitro transcription of the Clostridium pasteuranicum ferredoxin gene. J Biol Chem 261:11409–11415Google Scholar
  13. Harley CB, Reynolds RP (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361Google Scholar
  14. Hastrup S (1988) Analysis of the Bacillus subtilis xylose regulon. In: Ganesan AT, Hoch JA (eds) Genetics and biotechnology of Bacilli, vol 2. Academic Press, New York, pp 79–83Google Scholar
  15. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. In: Fiechter A, Jeffries TW (eds) Bioch Eng Biotechnol 27:1–32Google Scholar
  16. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224Google Scholar
  17. Kandler O, Weiss N (1986) Regular, nonsporing gram-positive rods: Lactobacillus. In: Sneath PHA, Mair N, Sharpe ME, Holt JG (eds) Bergey's Manual of Systematic Bacteriology, vol 2. Williams, Wilkins, Baltimore, pp 1209–1234Google Scholar
  18. Kreuzer P, Gärtner D, Allmansberger R, Hillen W (1989) Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol 171:3840–3845Google Scholar
  19. Lawliss VB, Dennis MS, Chen EY, Smith DH, Henner DJ (1984) Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. Appl Environ Microbiol 47:15–21Google Scholar
  20. Maleszka R, Wang PY, Schneider H (1982) A ColE1 hybrid plasmid containing Escherichia coli genes complementing d-xylose negative mutants of Escherichia coli and Salmonella typhimurium. Can J Biochem 62:144–151Google Scholar
  21. Mitsuhashi S, Lampen JO (1953) Conversion of d-xylose to d-xylulose in extracts of Lactobacillus pentosus. J Biol Chem 204:1011–1018Google Scholar
  22. Moran CP, Lang N, Le Grice SFJ, Lee G, Stephens M, Sonenshein AL, Pero J, Losick R (1982) Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mot Gen Genet 186:339–446Google Scholar
  23. Neuberger MS, Hartley BS, Walker JE (1981) Purification and properties of D-ribulose kinase and d-xylulose kinase from Klebsiella aerogenes. Biochem J 193:513–524Google Scholar
  24. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF (1987) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310Google Scholar
  25. Platt T (1986) Transcription termination and regulation of gene expression. Annu Rev Biochem 55:339–372Google Scholar
  26. Posno M, Leer RJ, van Luijk N, van Giezen MJF, Heuvelmans PTHM, Lokman BC, Pouwels PH (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregafional instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828Google Scholar
  27. Saari GC, Kumar AA, Kawasaki GH, Insley MY, O'Hara PJ (1987) Sequence of the Ampullariella sp. strain 3876 gene coding for xylose isomerase. J Bacteriol 169:612–618Google Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  29. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  30. Sauer RT, Pabo CO (1984) Protein-DNA recognition. Annu Rev Biochem 53:293–321Google Scholar
  31. Schellenberg GD, Sarthy A, Larson AE, Backer MP, Crabb JW, Lindstrom M, Hall BD, Furlong CE (1984) Xylose isomerase from Escherichia coli. J Biol Chem 259:6826–6832Google Scholar
  32. Shamanna DK, Sanderson KE (1979) Genetics and regulation of d-xylose utilization in Salmonella typhimurium LT2. J Bacteriol 139:71–79Google Scholar
  33. Sumiya M, Henderson PJF (1989) The d-xylose binding protein of Escherichia coli. Biochem Soc Trans 17:553–554Google Scholar
  34. Tinoco I, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature 246:40–41Google Scholar
  35. Tiraby G, Bejar S, Drocourt D, Reynes JP, Sicard PJ, Farber GK, Glasfeld A, Ringe D, Petsko GA (1989) Genetic, enzymatic, and crystallographic studies of the glucose isomerases of two Streptomyces species. In: Hershberger CL, Queener SW, Hegemann G (eds) Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 119–126Google Scholar
  36. Vangrysperre W, van Damme J, Vandekerckhove J, de Bruyne CK, Cornelis R, Kersters-Hilderson H (1990) Localization of the essential histidine and carboxylate group in d-xylose isomerases. Biochem J 265:699–705Google Scholar
  37. Wilhelm M, Hollenberg CP (1984) Selective cloning of Bacillus subtilis xylose isomerase and xylulokinase genes in Escherichia coli by IS5-mediated expression. EMBO J 3:2555–2560Google Scholar
  38. Wilhelm M, Hollenberg CP (1985) Nucleotide sequence of the Bacillus subtilis xylose isomerase gene: extensive homology between the Bacillus and E. coli enzyme. Nucleic Acids Res 15:5717–5722Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • B. Christien Lokman
    • 1
  • Pieter van Santen
    • 1
  • Jan C. Verdoes
    • 1
  • Jaap Krüse
    • 1
  • Rob J. Leer
    • 1
  • Mark Posno
    • 1
  • Peter H. Pouwels
    • 1
  1. 1.TNO Medical Biological LaboratoryRijswijkThe Netherlands

Personalised recommendations