Molecular and General Genetics MGG

, Volume 230, Issue 1–2, pp 155–160

Demonstration of nucleomorph-encoded eukaryotic small subunit ribosomal RNA in cryptomonads

  • Uwe -G. Maier
  • Claudia J. B. Hofmann
  • Stefan Eschbach
  • Jörn Wolters
  • Gabor L. Igloi
Article

Summary

In cryptomonads, unicellular phototrophic flagellates, the plastid(s) is (are) located in a special narrow compartment which is bordered by two membranes; it harbours neither mitochondria nor Golgi dictyosomes but comprises eukaryotic ribosomes and starch grains together with a small organelle called the nucleomorph. The nucleomorph contains DNA and is surrounded by a double membrane with pores. It is thought to be the vestigial nucleus of a phototrophic eukaryotic endosymbiont. Cryptomonads are therefore supposed to represent an intermediate state in the evolution of complex plastids from endosymbionts. We have succeeded in isolating pure nucleomorph fractions, and can thus provide, using pulsed field gel electrophoresis, polymerase chain reaction and sequence analysis, definitive proof for the eukaryotic nature of the symbiont and its phylogenetic origin.

Key words

Cryptomonads Nucleomorph Small subunit ribosomal RNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansorge W, Sproat B, Stegemann J, Schwager C (1986) A nonradioactive automated method for DNA sequence determination. J Biochem Biophys Methods 13:315–323Google Scholar
  2. Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379Google Scholar
  3. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151Google Scholar
  4. Eschbach S, Wolters J, Sitte P (1991a) Primary and secondary structure of the nuclear small subunit ribosomal RNA of the Cryptomonad Pyrenomonas salina as inferred from the gene sequence: evolutionary implications. J Mol Evol 32:247–252Google Scholar
  5. Eschbach S, Hofmann CJB, Maier U-G, Sitte P, Hausmann P (1991b) A eukaryotic genome of 660 kb: Electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res 19:1779–1781Google Scholar
  6. Gibbs SP (1978) The chloroplast endoplasmic reticulum: structure, function, and evolutionary significance. Can J Bot 56:2883–2889Google Scholar
  7. Gibbs SP (1981) The chloroplast of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361:193–208Google Scholar
  8. Gibbs SP, Gillott MA (1980) Has the chloroplast of cryptomonads evolved from an eukaryotic symbiont? In: Schwemmler W, Schenk HEA (eds) Endocytobiology, vol I. de Gruyter, Berlin, pp 737–743Google Scholar
  9. Gillott MA, Gibbs SP (1980) The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance. J Phycol 16:558–568Google Scholar
  10. Greenwood AD, Griffith HB, Santore UJ (1977) Chloroplasts and cell compartments in Cryptophyceae. Brit Phycol J 12:119Google Scholar
  11. Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phyletic relationship between chlorophytes, chrysophytes and oomycetes. Proc Natl Acad Sci USA 84:5823–5827Google Scholar
  12. Hansmann P (1988) Ultrastructural localization of RNA in cryptomonads. Protoplasma 146:81–88Google Scholar
  13. Hansmann P, Eschbach S (1990) Isolation and preliminary characterization of the nucleus and the nucleomorph of a cryptomonad, Pyrenomonas salina. Eur J Cell Biol 52:373–378Google Scholar
  14. Hansmann P, Falk H, Scheer U, Sitte P (1986) Ultrastructural localization of DNA in two Cryptomonas species by use of a monoclonal antibody. Eur J Cell Biol 42:152–160Google Scholar
  15. Kumazaki T, Hori H, Osawa S (1983) Phylogeny of protozoa deduced from 5S ribosomal rRNA sequences. J Mol Evol 19:411–419Google Scholar
  16. Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorphs of cryptomonads: Further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20Google Scholar
  17. Ludwig M, Gibbs SP (1987) Are the nucleomorphs of cryptomonads and Chlorarachnion the vestigial nuclei of eukaryotic endosymbionts? Ann NY Acad Sci 503:198–211Google Scholar
  18. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  19. McFadden GI (1990) Evidence that cryptomonad chloroplasts evolved from photosynthetic eukaryotic endosymbionts. J Cell Sci 95:303–308Google Scholar
  20. McKerracher L, Gibbs SP (1982) Cell and nucleomorph division in the alga Cryptomonas. Can J Bot 60:2440–2452Google Scholar
  21. Morrall S, Greenwood AD (1978) Ultrastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implications. J Cell Sci 54:311–328Google Scholar
  22. Neefs J-M, Van de Peer Y, Hendriks L, De Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:2237–2317Google Scholar
  23. Perasso R, Baroin A, Hu Qu L, Bachellerie JP, Adoutte A (1989) Origin of algae. Nature 339:142–144Google Scholar
  24. Perasso R, Baroin A, Adoutte A (1990) The emergence of eukaryotic algae within the protists: A molecular phylogeny based on ribosomal RNA sequencing. In: Wiessner W, Robinson DG, Starr RC (eds) Cell walls and surfaces, reproduction, photosynthesis. Springer Verlag, Berlin, pp 1–19Google Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  27. Sapp J (1990) Symbiosis in evolution: an origin story. Endocytobiosis Cell Res 7:5–36Google Scholar
  28. Schnepf E, Brown RM (1971) On relationships between endosymbiosis and the origin of plastids and mitochondria. In: Reinert J, Ursprung H (eds) Origin and continuity of cell organelles. Springer Verlag, Berlin, pp 299–322Google Scholar
  29. Sitte P (1987) Zellen in Zellen: endocytobiose und die Folgen. In: Lüst R (ed) Beobachtung, Experiment und Theorie in Naturwissenschaft und Medizin. Wiss Verlagsges, Stuttgart, pp 101–119Google Scholar
  30. Sitte P, Baltes S (1990) Morphometric analysis of two cryptomonads. Quantitative evaluation of fine-structural changes in an endocytobiotic system. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV. INRA, Paris, pp 229–233Google Scholar
  31. Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387Google Scholar
  32. Thirup S, Larsen NE (1990) ALMA, an editor for large sequence alignments. Proteins: structure, function and genetics 7:291–295Google Scholar
  33. Tomas RN, Cox ER (1973) Observations on the symbiosis of Peridinium balticum and its intracellular algae. J Phycol 9:304–323Google Scholar
  34. Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond [Biol] 204:244–248Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Uwe -G. Maier
    • 1
  • Claudia J. B. Hofmann
    • 1
  • Stefan Eschbach
    • 1
  • Jörn Wolters
    • 2
  • Gabor L. Igloi
    • 3
  1. 1.Institut für Biologie II, ZellbiologieUniversität FreiburgFreiburgGermany
  2. 2.Institut für Allgemeine MikrobiologieKiel 1Germany
  3. 3.Institut für Biologie IIIFreiburgFRG

Personalised recommendations