Journal of Mathematical Biology

, Volume 27, Issue 4, pp 463–483 | Cite as

First and second moments and the mean hamming distance in a stochastic replication-mutation model for biological macromolecules

  • J. Swetina
Article

Abstract

In this work first and second moments for a many species Moran model are calculated. The model describes by means of a time-continuous birth- and death process the evolution of an ensemble of N macromolecules out of n possible species. The molecules may replicate (correct or erroneous, in the latter case producing mutants) and may undergo elimination. Replication and elimination will be coupled in order to keep population size constant. In the case of arbitrary replication rates an expansion of the moments in powers of 1/N is found. For equal replication rates exact calculation of the moments is possible. In the case of a v-cube model (binary macromolecules) the second moments may be used to find a simple expression for the mean Hamming distance in the system. This quantity provides a measure for the localization of the ensemble.

Key words

Self-organization Stochastic evolution Localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, A., Plemmons, R. J.: Nonnegative matrices in the mathematical sciences. New York London: Academic Press 1979Google Scholar
  2. 2.
    Demetrius, L., Schuster, P., Sigmund, K.: Polynucleotide evolution and branching processes. Bull. Math. Biol. 47, 239–262 (1985)Google Scholar
  3. 3.
    Demetrius, L.: An extremal principle of macromolecular evolution. Phys. Scripta 35, 63–71 (1987)Google Scholar
  4. 4.
    Ebeling, W., Engel, A., Esser, B., Feistel, A.: Diffusion and reaction in random media and models of evolution processes. J. Stat. Phys. 37, 369–384 (1984)Google Scholar
  5. 5.
    Ebeling, W., Sonntag, I.: A stochastic description of evolutionary processes in underoccupied systems. BioSystems 19, 91–100 (1986)Google Scholar
  6. 6.
    Ebeling, W., Engel, A.: Models of evolutionary systems and their applications to optimization problems. Syst. Anal. Model. Simul. 3, 3–11 (1986)Google Scholar
  7. 7.
    Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971)Google Scholar
  8. 8.
    Eigen, M., McCaskill, J. S., Schuster, P.: The molecular quasispecies. Adv. Chem. Phys. (in press)Google Scholar
  9. 9.
    Fontana, W., Schuster, P.: A computer model of evolutionary optimization. Biophys. Chem. 26, 123–147 (1987)Google Scholar
  10. 10.
    Gardiner, C. W.: Handbook of stochastic methods, 2nd edn. Berlin Heidelberg New York: Springer 1985Google Scholar
  11. 11.
    Golding, G. B., Stobeck, C.:The distribution of nucleotide site differences between two finite sequences. Theor. Popul. Biol. 22, 96–107 (1982)Google Scholar
  12. 12.
    Jones, B. L., Leung, H. K.: Stochastic analysis of a nonlinear model for selection of biological macromolecules. Bull. Math. Biol. 43, 665–680 (1981)Google Scholar
  13. 13.
    Leung, H. K.: Stability analysis of a stochastic model for biomolecular selection. Bull. Math. Biol. 46, 399–406 (1984)Google Scholar
  14. 14.
    Leuthäusser, I.: An exact correspondence between Eigens evolution model and a two-dimensional Ising model. J. Chem. Phys. 84, 1884 (1986)Google Scholar
  15. 15.
    McCaskill, J. S.: A stochastic theory of macromolecular evolution. Biol. Cybern. 50, 63–73 (1984)Google Scholar
  16. 16.
    McCaskill, J. S.: A localization threshold for macromolecular quasispecies from continuously distributed replication rates. J. Chem. Phys. 80, 5194–5202 (1984)Google Scholar
  17. 17.
    Moran, P. A. P.: The effect of selection in a haploid genetic population. Proc. Camb. Phil. Soc. 54, 463–474 (1958)Google Scholar
  18. 18.
    Rumschitzky, D. S.: Spectral properties of Eigen evolution matrices. J. Math. Biol. 24, 667–680 (1987)Google Scholar
  19. 19.
    Schuster, P., Swetina, J.: Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol. 50, 635–660 (1987)Google Scholar
  20. 20.
    Schuster, P., Sigmund, K.: Fixation probabilities for advantageous mutants. Math. Biosci. (to appear)Google Scholar
  21. 21.
    Swetina J., Schuster, P.: Selfreplication with errors a model for polynucleotide replication. Biophys. Chem. 16, 329–345 (1982)Google Scholar
  22. 22.
    Watterson, G. A.: On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975)Google Scholar
  23. 23.
    Weinberger, E. D.: A stochastic generalization of Eigen's model of natural selection. Thesis, New York University 1987Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. Swetina
    • 1
  1. 1.Institut für theoretische Chemie und Strahlenchemie der Universität WienWienAustria

Personalised recommendations