Advertisement

Molecular and General Genetics MGG

, Volume 249, Issue 3, pp 274–280 | Cite as

Cloning and nucleotide sequence of fosfomycin biosynthetic genes of Streptomyces wedmorensis

  • Tomomi Hidaka
  • Masao Goda
  • Tomohisa Kuzuyama
  • Naomi Takei
  • Makoto Hidaka
  • Haruo Seto
Original Paper

Abstract

The biosynthetic pathway for production of the antibiotic fosfomycin by Streptomyces wedmorensis consists of four steps including the formation of a C-P bond and an epoxide. Fosfomycin production genes were cloned from genomic DNA using S. wedmorensis mutants blocked at different steps of the biosynthetic pathway. Four genes corresponding to each of the biosynthetic steps were found to be clustered in a DNA fragment of about 5 kb. Nucleotide sequencing of a large fragment revealed the presence of ten open reading frames, including the four biosynthetic genes and six genes with unknown functions.

Key words

Fosfomycin C-P bond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammerschmidt F (1991) Biosynthesis of natural products with a C-P bond. Part 8: On the origin of the oxirane oxygen atom of fosfomycin in Streptomyces fradiae. J Chem Soc Perkin Trans 1:1993–1996Google Scholar
  2. Hammerschmidt F, Bovermann G, Bayer K (1990) Das Oxiran-Sauerstoff-Atom des fosfomycins entstammt nicht dem luft-sauerstoff. Liebigs Ann Chem 1055–1061Google Scholar
  3. Hashimoto T, Yamada Y (1987) Purification and characterization of hyoscyamine 6β-hydroxylase from root cultures of Hyoscyamus niger L. Eur J Biochem 164:277–285Google Scholar
  4. Hashimoto T, Yamada Y (1992) Biosynthesis of scopolamine and an application for genetic engineering of medical plant. Plant Tissue Culture and Gene Manipulation for Breeding and Formation of Phytochemicals, pp 255–259Google Scholar
  5. Hashimoto T, Hayashi A, Amano Y, Kohno J, Iwanari H, Usuda S, Yamada Y (1991) Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem 266:4648–4653Google Scholar
  6. Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller TW, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S (1969) Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166:122–123Google Scholar
  7. Hidaka T, Mori M, Imai S, Hara O, Nagaoka K, Seto H (1989) Studies on the biosynthesis of bialaphos (SF-1293). 9. Biochemical mechanism of C-P bond formation in bialaphos: discovery of phosphoenolpyruvate phosphomutase which catalyzes the formation of phosphonopyruvate from phosphoenolpyruvate. J Antibiot 42:491–494Google Scholar
  8. Hidaka T, Iwaskura H, Imai S, Seto H (1992a) Studies on the biosynthesis of fosfomycin. 3. Detection of phosphoenolpyruvate phosphomutase activity in a fosfomycin high-producing strain of Streptomyces wedmorensis and characterization of its blocked mutant NP-7. J Antibiot 45:1008–1010Google Scholar
  9. Hidaka T, Hidaka M, Seto H (1992b) Studies on the biosynthesis of bialaphos (SF-1293). 14. Nucleotide sequence of phosphoenolpyruvate phosphomutase gene isolated from a bialaphos producing organism, Streptomyces hygroscopicus, and its expression in Streptomyces lividans. J Antibiot 45:1977–1980Google Scholar
  10. Hidaka T, Hidaka M, Uozumi T, Seto H (1992c) Nucleotide sequence of carboxyphosphonoenolpyruvate phosphomutase gene isolated from a bialaphos producing organism, Streptomyces hygroscopicus, and its expression in Streptomyces lividans. Mol Gen Genet 233:476–478Google Scholar
  11. Hidaka T, Hidaka M, Seto H (1995) Sequence of a P-methyltransferase-encoding gene isolated from a bialaphos-producing Streptomyces hygroscopicus. Gene, in pressGoogle Scholar
  12. Hopwood DA, Bibb MJ, Charter KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich, UKGoogle Scholar
  13. Hori T, Horiguchi M, Hayashi A (1984) Biochemistry of natural C-P compounds. Japanese Association for Research on the Biosynthesis of C-P Compounds. Maruzen, KyotoGoogle Scholar
  14. Imai S, Seto H, Ogawa H, Satoh A, Otake N (1985) Studies on the biosynthesis of fosfomycin. Conversion of 2-hydroxyethylphosphonic acid and 2-aminoethylphosphonic acid to fosfomycin. Agric Biol Chem 49:873–874Google Scholar
  15. Kamigiri K, Hidaka T, Imai S, Murakami K, Seto H (1992) Studies on the biosynthesis of bialaphos (SF-1293) 12. C-P bond formation mechanism of bialaphos: discovery of a P-methylation enzyme. J Antibiot 45:781–787Google Scholar
  16. Katayama N, Thubotani S, Nozaki Y, Harada S, Ono H (1990) Fosfadecin and fosfocytocin, new nucleotide antibiotics produced by bacteria. J Antibiot 43:238–246Google Scholar
  17. Kuzuyama T, Hidaka T, Kamigiri K, Imai S, Seto H (1992) Studies on the biosynthesis of fosfomycin. 4. The biosynthetic origin of the methyl group of fosfomycin. J Antibiot 45:1812–1814Google Scholar
  18. Kuzuyama T, Hidaka T, Imai S, Seto H (1993) Studies on the biosynthesis of fosfomycin. 5. Cloning of genes for fosfomycin biosynthesis. J Antibiot 46:1478–1480Google Scholar
  19. Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464Google Scholar
  20. Nakashita H, Shimazu A, Hidaka T, Seto H (1992) Purification and characterization of phosphoenolpyruvate phosphomutase from Pseudomonas gladioli B-1. J Bacteriol 174:6857–6861Google Scholar
  21. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448Google Scholar
  22. Peretz M, Burstein Y (1989) Amino acid sequence of alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Biochemistry 28:6549–6555Google Scholar
  23. Popham DL, Setlow P (1993) Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein and an apparent amino acid racemase. J Bacteriol 175:2917–2925Google Scholar
  24. Preis S, Myers TC, Jense EV (1995) Phosphonic acids. III: Hydroxyl subtituted propylphosphonic acids. J Am Chem Soc 77:6225–6227Google Scholar
  25. Seidel HM, Freeman S, Seto H, Knowles JR (1988) Phosphonate biosynthesis: the isolation and characterization of phosphoenolpyruvate phosphomutase, the enzyme responsible for the formation of a carbon-phosphorus bond. Nature 335:457–458Google Scholar
  26. Seidel HM, Pompliano DL, Knowles JR (1992) Phosphonate biosynthesis: molecular cloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformis and over expression of the gene product in Escherichia coli. Biochemistry 31:2598–2608Google Scholar
  27. Seto H, Hidaka T, Kuzuyama T, Shibahara S, Usui T, Sakanaka O, Imai S (1991) Studies on the biosynthesis of fosfomycin. 2: Conversion of 2-hydroxypropylphosphonic acid to fosfomycin by blocked mutants of Streptomyces wedmorensis. J Antibiot 44:1286–1288Google Scholar
  28. Shoji J, Kato T, Hinoo H, Hattori T, Hirooka K, Matsumoto K, Tanimoto T, Kondo E (1986) Production of fosfomycin (phosphonomycin) by Pseudomonas syringae. J Antibiot 39:1011–1013Google Scholar
  29. Thompson CJ, Ward JM, Hopwood DA (1982) Cloning of antibiotic resistance and nutritional genes in Streptomyces. J Bacteriol 151:668–677Google Scholar
  30. Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11Google Scholar
  31. Walker CJ, Mansfield KE, Rezzano IN, Hanamoto CM, Smith KM, Castelfranco PA (1988) The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence. Biochem J 255:685–692Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Tomomi Hidaka
    • 1
    • 2
  • Masao Goda
    • 1
  • Tomohisa Kuzuyama
    • 1
  • Naomi Takei
    • 1
  • Makoto Hidaka
    • 1
  • Haruo Seto
    • 1
  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo-ku, TokyoJapan
  2. 2.Department of Biotechnology, Division of Agriculture and Agricultural Life SciencesThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations