Rheumatology International

, Volume 15, Issue 5, pp 181–187 | Cite as

Quantification of morphometric changes in murine experimental osteoarthritis using image analysis

  • A. A. van Valburg
  • G. J. V. M. van Osch
  • P. M. van der Kraan
  • W. B. van den Berg
Original Article


The aim of this study was to evaluate a method for the quantification of cartilage erosions and osteophyte sizes in a murine model of osteoarthritis (OA). Mice in which OA was induced in the knee joint by intra-articular injection of bacterial collagenase were used. With an interactive image analysis system, the areas occupied by osteophytes and the areas of erosions of the articular cartilage were measured on histological sections by two independent observers at two time points. Measurements of osteophyte areas and cartilage loss at the tibial plateau showed good reproducibility, whereas measurement of cartilage loss at the femoral condyles was less reproducible. Measurement of three frontal total knee joint sections from the middle part of the joint provided a reliable measure for cartilage damage and osteophyte size in the total joint. A cumulative score was developed, composed of both cartilage loss and osteophyte size, which can be used as a general measure for OA of the knee joint. The presented method of quantitative scoring makes it possible to perform correlation studies and to investigate the effect of therapeutic interventions on the osteoarthritis process.

Key words

Osteoarthritis Cartilage Osteophytes Image analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams ME, Brand KD (1991) Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 18:428–435Google Scholar
  2. 2.
    Altman RD, Tenenbaum J, Latta L, Riskin W, Blanco LN, Howell DS (1984) Biomechanical and biochemical properties of dog cartilage in experimentally induced osteoarthritis. Ann Rheum Dis 43:83–90Google Scholar
  3. 3.
    Brandt KD, Braunstein EM, Visco DM, O'Connor B, Heck D, Albrecht M (1991) Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J Rheumatol 18:436–446Google Scholar
  4. 4.
    Colombo C, Butler M, O'Byrne E, Hickman L, Swarzendruber D, Selwyn M, Steinetz B (1983) A new model of osteoarthritis in rabbits. I. Development of knee joint pathology following lateral menisectomy and section of the fibular collateral and sesamoid ligament. Arthritis Rheum 26:875–886Google Scholar
  5. 5.
    Hede A, Svalastoga E, Reimann I (1991) Articular cartilage changes following meniscal lesions. Repair and meniscectomy studied in the rabbit knee. Acta Orthop Scand 62:319–322Google Scholar
  6. 6.
    McDevitt C, Gilbertson E, Muir H (1977) An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg 59B:24–35Google Scholar
  7. 7.
    Moskowitz RW, Goldberg VM (1987) Studies of osteophyte pathogenesis in experimentally induced osteoarthritis. J Rheumatol 14:311–320Google Scholar
  8. 8.
    Pond MJ, Nuki G (1973) Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 32:387–388Google Scholar
  9. 9.
    Van der Kraan PM, Vitters El, Van Beuningen HM, Van der Putte LBA, Van den Berg WB (1990) Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteo-arthritis. J Exp Pathol 71:19–31Google Scholar
  10. 10.
    van Osch GJVM, Blankevoort L, van der Kraan PM, Janssen B, Hekman E, Huiskes R, van den Berg WB (1995) Laxity characteristics of normal and pathological murine knee joints in vitro. J Orthop Res (in press)Google Scholar
  11. 11.
    Van der Kraan PM, Vitters EL, van der Putte LBA, van den Berg WB (1989) Development of osteoarthritic lesions in mice by “metabolic” and “mechanical” alterations in the knee joints. Am J Pathol 135:1001–1014Google Scholar
  12. 12.
    Van der Kraan PM, Vitters EL, van Beuningen HM, van den Berg WB (1992) Proteoglycan synthesis and osteophyte formation in “metabolically” and “mechanically” induced murine osteoarthritis. An in vivo autoradiographic study. J Exp Pathol 73:335–350Google Scholar
  13. 13.
    van Osch GJVM, van der Kran PM, Vitters EL, Blankevoort L, van den Berg WB (1993) Induction of osteoarthritis by intra-articular injection of collagenase in mice. Strain and sex related differences. Ostoarthritis Cartilage 1:171–177Google Scholar
  14. 14.
    Almekinders LC, Logan TC (1992) Results following treatment of traumatic dislocations of the knee joint. Clin Orthop Rel Res 284:203–207Google Scholar
  15. 15.
    Buckland-Wright JC, Macfarlane DG, Lynch JA (1991) Osteophytes in the osteoarthritic hand: their incidence, size, distribution, and progression. Ann Rheum Dis 50:627–630Google Scholar
  16. 16.
    Dougados M, Gueguen A, Nguyen M, Thiesce A, Listrat V, Jacob L, Nakache J-P, Gabriel KR, Lequesne M, Amor B (1992) Longitudinal radiologic evaluation of osteoarthritis of the knee. J Rheumatol 19:378–384Google Scholar
  17. 17.
    Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KPH (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49:20–26Google Scholar
  18. 18.
    Hernborg J, Nilsson BE (1973) The relationship between osteophytes in the knee joint, osteoarthritis and aging. Acta Orthop Sanc 44:69–74Google Scholar
  19. 19.
    Lane NE, Nevitt MC, Genant HK, Hochberg MC (1993) Reliability of new indices of radiographic osteoarthritis of the hand and hip and lumbar disc degeneration. J Rheumatol 20:1911–1918Google Scholar
  20. 20.
    Smith D, Braunstein EM, Brandt KD, Katz BP (1992) A radiographic comparison of erosive osteoarthritis and idiopathic nodal osteoarthritis. J Rheumatol 19:896–904Google Scholar
  21. 21.
    Van Saase JLCM, van Romunde LKJ, Cats A, Vandenbroucke JP, Valkenburg HA (1989) Epidemilogy of osteoarthritis: Zoetermeer survey. Comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. Ann Rheum Dis 48:271–280Google Scholar
  22. 22.
    Arsever CL, Bole GG (1989) Experimental osteoarthritis induced by selective myectomy and tendotomy. Arthritis Rheum 29:251–261Google Scholar
  23. 23.
    Lukoschek M, Schaffler MB, Burr DB, Boyd RD, Radin EL (1988) Synovial membrane and cartilage changes in experimental osteoarthorisis. J Orthop Res 6:475–492Google Scholar
  24. 24.
    Schünke M, Tillmann B, Brück M, Müller-Ruchholtz W (1988) Morphologic characteristics of developing osteoarthrotic lesions in the knee cartilage of STR/IN mice. Arthritis Rheum 31:898–905Google Scholar
  25. 25.
    Williams JA, Thonar EJ-AM (1989) Early osteophyte formation after chemically induced articular cartilage injury. Am J Sports Med 17:7–15Google Scholar
  26. 26.
    Mankin HJ, Dorfman H, Lipiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg 53:523–537Google Scholar
  27. 27.
    Yu LP, Smith GN, Brand KD, Myers SL, O'Connor BL, Brandt DA (1992) Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arthritis Rheum 35:1150–1159Google Scholar
  28. 28.
    Yu LP, Smith GN, Brandt KD, O'Connor B, Myers SL (1993) Therapeutic administration of doxycycline (DOXY) slows the progression of cartilage destruction in canine osteoarthritis (OA). Trans Orthop Res 18:724Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. A. van Valburg
    • 2
  • G. J. V. M. van Osch
    • 1
  • P. M. van der Kraan
    • 2
  • W. B. van den Berg
    • 2
  1. 1.Department of OtorhinolaryngologyUniversity of RotterdamRotterdamThe Netherlands
  2. 2.Department of RheumatologyUniversity Hospital NijmegenNijmegenThe Netherlands

Personalised recommendations