Advertisement

Molecular and General Genetics MGG

, Volume 247, Issue 5, pp 633–638 | Cite as

Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum

  • Jiří Fajkus
  • Aleš Kovařík
  • Robert mKrálovics
  • Milan Bezděk
Original Paper

Abstract

We have examined the structure and chromatin organization of telomeres in Nicotiana tabacum. In tobacco the blocks of simple telomeric repeats (TTTAGGG)n are many times larger than in other plants, e.g., Arabidopsis thatiana or tomato. They are resolved as multiple fragments 60–160 kb in size (in most cases 90–130 kb) on pulsed-field gel electrophoresis (PFGE) of restriction endonuclease-digested DNA. The major subtelomeric repeat of the HRS60 family forms large homogeneous blocks of a basic 180 by motif having comparable lengths. Micrococcal nuclease (MNase) cleaves tobacco telomeric chromatin into subunits with a short repeat length of 157±5 bp; the subtelomeric heterochromatin characterized by tandemly repeated sequences of the HRS60 family is cut by MNase with a 180 by periodicity. The monomeric and dimeric particles of telomeric and subtelomeric chromatin differ in sensitivity to MNase treatment: the telomeric particles are readily digested, producing ladders with a periodicity of 7 bp, while the subtelomeric particles appear to be rather resistant to intranucleosomal cleavage. The results presented show apparent similarities in the organization of telomeric chromatin in higher plants and mammals.

Key words

Plant telomeres Chromatin Repetitive DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezděk M, Koukalová B, Brzobohatý B, Vyskot B (1991) 5-Azacytidine-induced hypomethylation of tobacco HRS60 tandem DNA repeats in tissue culture. Planta 184: 487–490Google Scholar
  2. Broun P, Ganal MW, Tanksley SD (1992) Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. Proc Natl Acad Sci USA 89: 1354–1357Google Scholar
  3. Budarf ML, Blackburn EH (1986) Chromatin structure of the telomeric region and 3′-nontranscribed spacer of Tetrahymena ribosomal RNA genes. J Biol Chem 261: 363–369Google Scholar
  4. Cox AV, Bennet ST, Parokonny AS, Kenton A, Callimasia MA, Bennet MD (1993) Comparison of plant telomere locations using a PCR-generated synthetic probe. Annals Bot 72: 239–247Google Scholar
  5. Drew HR (1984) Structural specifities of five commonly used DNA nucleases. J Mol Biol 176: 535–557Google Scholar
  6. Espinás ML, Carballo M (1993) Pulsed-field electrophoresis analysis of a higher-order chromatin structures of Zea mays. Highly methylated DNA in the 50 kb chromatin structure. Plant Mol Biol 21: 847–857Google Scholar
  7. Fajkus J, Vyskot B, Bezdk M (1992) Changes in chromatin structure due to hypomethylation induced with 5-azacytidine or dlethionine. FEBS Lett 314: 13–16Google Scholar
  8. Ganal MW, Lapitan NLV, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3: 87–94Google Scholar
  9. Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica, Waltham, MassachusettsGoogle Scholar
  10. Kenton A, Parokonny AS, Gleba YY, Bennet MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240: 159–169Google Scholar
  11. Makarov VL, Lejnine S, Bedoyan J, Langmore JP (1993) Nucleosomal organization of telomere-specific chromatin in rat. Cell 73: 775–787Google Scholar
  12. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryote telomere from Arabidopsis thaliana. Cell 53: 127–136Google Scholar
  13. Schwarzacher T, Heslop-Harrison JS (1991) In situ hybridization to plant telomeres using synthetic oligomers. Genome 34: 317–323Google Scholar
  14. Shpigelman ES, Trifonov EN, Bolshoy A (1993) CURVATURE: software for the analysis of curved DNA. Comp Appl Bio Sci 9: 435–440Google Scholar
  15. Tommerup H, Dousmanis A, deLange T (1994) Unusual chromatin in human telomeres. Mol Cell Biol 14: 5777–5785Google Scholar
  16. Travers AA (1987) DNA bending and nucleosome positioning. Trends Biochem Sci 12: 108–112Google Scholar
  17. Trifonov EN (1980) Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res 8: 4041–4053Google Scholar
  18. Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell 59: 871–880Google Scholar
  19. Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6: 197–210Google Scholar
  20. Wu KS, Röder MS, Ganal MW (1992) Isolation of plant DNA for pulsed-field gel electrophoresis. In: Burmeister M, Ulanovsky L (eds) Methods in molecular biology, Vol XII. Humana Press, Totowa, NJ, pp 145–157Google Scholar
  21. Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23: 579–604Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Jiří Fajkus
    • 1
  • Aleš Kovařík
    • 1
  • Robert mKrálovics
    • 1
  • Milan Bezděk
    • 1
  1. 1.Academy of Sciences of the Czech RepublicInstitute of BiophysicsBrnoCzech Republic

Personalised recommendations