Rheumatology International

, Volume 13, Issue 1, pp 1–4 | Cite as

Neutral endopeptidase (3.4.24.11) in plasma and synovial fluid of patients with rheumatoid arthritis. A marker of disease activity or a regulator of pain and inflammation?

  • M. Matucci-Cerinic
  • A. Lombardi
  • G. Leoncini
  • A. Pignone
  • L. Sacerdoti
  • M. G. Spillantini
  • G. Partsch
Originals

Summary

In recent years the role of the peripheral nervous system has been focused on the pathogenesis of rheumatoid arthritis (RA). In particular, substance P (SP), released by the sensory terminals, has been demonstrated to be involved in cartilage breakdown [13]. The aim of our work was to study the levels of SP and its peptidases, neutral endopeptidase (3.4.24.11) (NEP) and angiotensin-converting enzyme (ACE), in the synovial fluid and plasma of 30 patients with RA and 14 patients with osteoarthritis (OA). ACE and NEP were determined with a fluorimetric assay and SP with a radioimmunoassay (RIA) method. ACE levels were normal in the plasma of patients with RA and OA (6.1±1.9 and 6.7±1.4 pmol/ml/min, respectively); we found no differences in the values, of ACE between RA and OA synovial fluid (5.7±4.2 and 5.5±4.1 pmol/ml/min, respectively). NEP levels were significantly increased in plasma (139.3±36 pmol/ml/min) and synovial fluid (133.8±32 pmol/ml/min in synovial fluid) and healthy controls (89.7±14 pmol/ml/min in plasma). In synovial fluid, SP was significantly higher in RA patients (43.1±16.6 pg/ ml) than in OA patients (12±13.1 pg/ml), while plasma levels did not show any difference (RA: 14.4±10.2; OA: 13.6±10.6; healthy subjects: 11.3±3.9 pg/ml). The only relationship detected in controls and in OA was among plasma NEP and ESR (P<0.05) and synovial fluid NEP (P<0.001). Our data confirmed that SP could have a role in the pathogenesis of RA synovial inflammation through a control on neurogenic inflammation (SP degradation), vascular tone control (endothelin degradation) and on nociception (enkephalin degradation).

Key words

Neutral endopeptidases Substance P Rheumatoid arthritis Angiotensin converting enzyme Neurogenic inflammation Nociception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erdos EG, Skidgel RA (1987) The angiotensin I converting enzyme. Lab Invest 56:345–348Google Scholar
  2. 2.
    Gafford JT, Skidgel RA, Erdos EG, Hersh LB (1983) Human kidney enkephalinase, a neutral metalloendopeptidase that cleaves active peptides. Biochemistry 22:3265–3271Google Scholar
  3. 3.
    Noveral JP, Mueller SN, Levine EM (1987) Release of angiotensin I converting enzyme by endothelial cells in vitro. J Cell Physiol 131:1–5Google Scholar
  4. 4.
    Yang H, Erdos EG, Levin Y (1970) A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta 214:374–376Google Scholar
  5. 5.
    Skidgel RA, Engelbrecht S, Johnson A, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776Google Scholar
  6. 6.
    Erdos EG, Skidgel RA (1988) Human neutral endopeptidase 24.11 (enkephalinase): function, distribution and release. Adv Exp Med Biol 240:13–21Google Scholar
  7. 7.
    Matsas R, Kenny A, Turner AS (1984) The metabolism of neuropeptides. The hydrolysis of peptides, including enkephalins, tachykinins and their analogies by endopeptidase 24.11. Biochem J 223:433–440Google Scholar
  8. 8.
    Visayaraghavan J, Scicli AG, Carrettero OA, Slaughter C, Moomaw C, Hersh LB (1990) The hydrolysis of endothelins by neutral endopeptidase 24.11 (enkephalinase). JBC 65:14150–14155Google Scholar
  9. 9.
    Levine JD, Collier DH, Basbaum AI, Moskowitz MA, Helms CA (1985) Hypothesis: the nervous system may contribute to the pathophysiology of rheumatoid arthritis. J Rheumatol 12:406–411Google Scholar
  10. 10.
    Lotz M, Carson DA, Vaughan JH (1987) Substance P activation of rheumatoid synoviocytes: neutral pathway in pathogenesis of arthritis. Science 235:893–895Google Scholar
  11. 11.
    Matucci-Cerinic M, Partsch G (1992) The contribution of the peripheral nervous system and the neuropeptide network to the development of synovial inflammation. Clin Exp Rheumatol. 10:211–215Google Scholar
  12. 12.
    Pernow B (1985) Role of tachykinins in neurogenic inflammation. J Immunol 135:8125–8155Google Scholar
  13. 13.
    Levine JD, Clark R, Helms C, Moskowitz MA, Basbaum AI (1984) Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226:547–552Google Scholar
  14. 14.
    Spillantini MG, Geppetti PA, Fanciullacci M, Michelacci S, Lecomte JM, Sicuteri F (1986) In vivo enkephalinase inhibition by acetorphan in human plasma and CSF. Eur J Pharmacol 125:147–150Google Scholar
  15. 15.
    Roques BP, Fournie-Zaluski MC, Soroca A, et al. (1980) The enkephalinase inhibitor, thiorphan, shares antinociceptive activity in mice. Nature 288:286–288Google Scholar
  16. 16.
    Spillantini MG, Sicuteri F, Salmon S, Malfroy B (1990) Characterization of endopeptidase 3.4.24.11 (enkephalinase) activity in human plasma and cerebrospinal fluid. Biochem Pharmacol 39:1353–1356Google Scholar
  17. 17.
    Yang HYT, Neff NH (1972) Distribution and properties of angiotensin converting enzyme of rat brain. J Neurochem 19:2443–2450Google Scholar
  18. 18.
    Matucci-Cerinic M, Pignone A, Lotti T, et al. (1990) Reduced angiotensin converting enzyme plasmatic activity in scleroderma. A marker of endothelial injury? J Rheumatol 17:328–330Google Scholar
  19. 19.
    Matucci-Cerinic M, Partsch G, Marabini S, Cagnoni M (1991) High levels of substance P in rheumatoid arthritis synovial fluid and evidence that synoviocytes are not the major source of substance P. Clin Exp Rheumatol 9:440–441Google Scholar
  20. 20.
    Devillier P, Weill B, Renoux M, Menkès CJ, Pradelles P (1987) Elevated levels of tachykinin-like immunoreactivity in joint fluids from patients with rheumatic inflammatory disease. N Engl J Med 314:1323Google Scholar
  21. 21.
    Agro A, Stanisz AM (1992) Are lymphocytes a target for substance P modulation in arthritis? Semin Arthritis Rheum 21:252–258Google Scholar
  22. 22.
    Menkès CJ, Renoux M, Laoussadi S, Mauborgne A, Bruxelle J, Cesselin F (1992) Substance P levels in the synovium and synovial fluid from rheumatoid arthritis and osteoarthritis. J Rheumatol (in press)Google Scholar
  23. 23.
    Marshall KW, Chiu B, Inman R (1990) Substance P and arthritis: analysis of plasma and synovial fluid levels. Arthritis Rheum 33:87–90Google Scholar
  24. 24.
    Larsson J, Ekblom A, Henriksson K, Lundeberg T, Theodorrsson E (1991) Concentration of substance P, neurokinin A, calcitonin gene related peptide, neuropeptide Y, vasointestinal peptide in synovial fluid from knee joints in patients suffering from rheumatoid arthritis. Scand J Rheumatol 20:326–335Google Scholar
  25. 25.
    Lowe JR, Dixon JS, Guthrie JA, McWhinney P (1986) Serum and synovial fluid levels of angiotensin converting enzyme in polyarthritis. Ann Rheum Dis 45:921–924Google Scholar
  26. 26.
    Blann AD (1991) Von Willebrand factor antigen and angiotensin converting enzyme in synovial fluid. Scand J Rheumatol 20:213–214Google Scholar
  27. 27.
    Veale D, Fitzgerald O (1990) Serum and synovial fluid angiotensin converting enzyme in inflammatory joint disease. Br J Rheumatol 29:[Suppl] 1:23Google Scholar
  28. 28.
    Appelboom T, de Martelaer V, de Prez E, Hauzeur JP, Deschodt-Lanckman M (1991) Enkephalinase: a physiologic neuroimmunomodulator detected in the synovial fluid. Arthritis Rheum 34:1048–1055Google Scholar
  29. 29.
    Hughes J, Smith JW, Hosterlitz HW, Fathergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579Google Scholar
  30. 30.
    Fredrickson RCA (1977) Cyclic AMP receptor in mitochondria. Life Sci 21:23–41Google Scholar
  31. 31.
    Way EL, Glasgow CE (1978) The endorphins: possible physiologic roles and therapeutic applications. Clin Ther 1:371–386Google Scholar
  32. 32.
    Sagen J, Wang H (1990) Prolonged analgesia by enkephalinase inhibition in rats with spinal cord adrenal medullary transplants. Eur J Pharmacol 179:427–433Google Scholar
  33. 33.
    Bjurholm A, Kreicbergs A, Brodin E, Schutzberg M (1988) Substance P and CGRP-immunoreactive nerves in bone. Peptides 9:165–171Google Scholar
  34. 34.
    Blalock JE (1989) A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 69:1–32Google Scholar
  35. 35.
    Partsch G, Matucci-Cerinic M (1990) Evidence that substance P is not released by capsaicin from osteoarthritis and rheumatoid arthritis synoviocytes in vitro. Ann Rheum Dis 49:653Google Scholar
  36. 36.
    Mapp PL, Walsh DA, Cruwys SC, Kidd BL, Blake DR (1991) Localization of neutral endopeptidase to the human synovium. Br J Rheumatol 30:121 [Suppl 2]Google Scholar
  37. 37.
    Sreedharan SP, Goetzl ES, Malfroy B (1990) Elevated synovial tissue concentration of the common acute lymphoblastic leukemia antigen (CALLA)-associated neutral endopeptidase (3.4.24.11) in human chronic arthritis. Immunology 71:142–144Google Scholar
  38. 38.
    Bathon JM, Proud D, Mizutani S, Ward PE (1992) Cultured human synovial fibroblasts rapidly metabolize kinins and neuropeptides. J Clin Invest 90:981–991Google Scholar
  39. 39.
    Kenny HJ, Bowes MA, Gee NS, Matsas R (1985) Endopeptidase-24.11: a cell surface enzyme for metabolizing regulatory peptides. Biochem Soc Trans 13:293–295Google Scholar
  40. 40.
    Iwamoto I, Kimura A, Ochiai K, Tomioka H, Yoshida S (1991) Distribution of neutral endopeptidase activity in human blood leucocytes. J Leukocyte Biol 49:116–125Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Matucci-Cerinic
    • 1
  • A. Lombardi
    • 2
  • G. Leoncini
    • 2
  • A. Pignone
    • 2
  • L. Sacerdoti
    • 2
  • M. G. Spillantini
    • 3
  • G. Partsch
    • 4
  1. 1.Institute of Internal MedicineUniversity of CagliariItaly
  2. 2.Institute of Internal Medicine IVUniversity of FlorenceItaly
  3. 3.Medical Research Council, Molecular Neurobiology UnitUniversity of CambridgeUnited Kingdom
  4. 4.Ludwig Boltzmann Institute for RheumatologyWien-OberlaaAustria

Personalised recommendations