Molecular and General Genetics MGG

, Volume 246, Issue 1, pp 56–64 | Cite as

Heat shock protein HSP60 can alleviate the phenotype of mitochondrial RNA-deficient temperature-sensitive mna2 pet mutants

  • Arunik Sanyal
  • Alexis Harington
  • Christopher J. Herbert
  • Olga Groudinsky
  • Piotr P. Slonimski
  • Beatrice Tung
  • Godfrey S. Getz
Original Paper

Abstract

mna2, which belongs to the class I temperature-sensitive pet mutants that lose mitochondrial (mt)RNA at restrictive temperature, was shown by complementation and sequence determination to correspond to the gene coding for HSP60. Both mna2-1 and mna2-2, the two available alleles of mna2, have conservative single amino acid substitutions in the HSP60 gene. Valine substitutes for an alanine (position 47) in mna2-1, and an isoleucine substitutes for a valine (position 77) in mna2-2. These substitutions result in defects in respiration and in steady-state mtRNA accumulation. Wild-type hsp60 alleviates the mtRNA phenotype completely, while partially relieving the respiratory deficiency.

Key words

Temperature-sensitive mutants Heat shock protein 60 Conservative single amino acid substitutions Mitochondrial biogenesis Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben Asher E, Groudinsky O, Dujardin G, Altamura N, Kermorgant M, Slonimski PP (1989) Novel class of nuclear genes involved in both mRNA splicing and protein synthesis in Saccharomyces cerevisiae mitochondria. Mol Gen Genet 215:517–528Google Scholar
  2. Berg PE, Lewin A, Christianson T, Rabinowitz M (1979) Propagation of restriction fragments from the mitochondrial DNA of Saccharomyces cerevisiae in E. coli by means of plasmid vectors. Nucleic Acids Res 6:2133–2150Google Scholar
  3. Biswas TK, Getz GS (1990) Regulation of transcriptional initiation in yeast mitochondria. J Biol Chem 265:19053–19059Google Scholar
  4. Bonneaud N, Ozier-Kalogeropoulos O, Li G, Labouesse M, Minveille-Se'bastia L, Lacroute F (1991) A family of low and high replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615Google Scholar
  5. Borst P, Grivell LA (1978) The mitochondrial genome of yeast. Cell 15:705–723Google Scholar
  6. Broach JR, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of the Can1 gene. Gene 8:121–133Google Scholar
  7. Carle GF, Olson MV (1985) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82:3756–3760Google Scholar
  8. Cheng MY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein HSP60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625Google Scholar
  9. Cheng MY, Hard F-U, Horwich AL (1990) The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348:455–458Google Scholar
  10. Cryer DR, Eccleshall R, Marmur J (1975) Isolation of yeast DNA. In: Prescott DM (ed) Methods in Cell Biology, vol 12. Academic Press, New York, pp 39–44Google Scholar
  11. Daum G, Bohni PC, Schatz G (1982) Import of proteins into mitochondria: cytochrome b and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033Google Scholar
  12. Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors. Mol Gen Genet 179:469–482Google Scholar
  13. Edwards JC, Levens D, Rabinowitz M (1982) Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell 31:337–346Google Scholar
  14. Gietz RJ, Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact cells using single-stranded nucleic acids as carrier. Yeast 7:253–263Google Scholar
  15. Glab N, Wise RP, Pring DR, Jacq C, Slonimski PP (1990) Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize; respiratory dysfunction and uncoupling of yeast mitochondria. Mol Gen Genet 223:24–32Google Scholar
  16. Grivell LA (1989) Nucleomitochondrial interactions in yeast mitochondrial biogenesis. Eur J Biochem 182:447–493Google Scholar
  17. Hemmingsen SM, Woolford C, Vander Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334Google Scholar
  18. Herbert CJ, Macadre C, Becam A-M, Lazowska J, Slonimski PP (1992) The MRS1 gene of S. douglasii: co-evolution of mitochondrial introns and specific splicing proteins encoded by nuclear genes. Gene Expression 2:203–214Google Scholar
  19. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168Google Scholar
  20. Locker J, Rabinowitz M (1979) An overview of mitochondrial nucleic acids and biogenesis. Methods Enzymol 56:3–16Google Scholar
  21. Macino G, Tzagoloff A (1979) Assembly of mitochondrial membrane system: the DNA sequence of a mitochondrial ATPase gene in Saccharomyces cerevisiae. J Biol Chem 254:4617–4623Google Scholar
  22. Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99Google Scholar
  23. McMullin TW, Hallberg RL (1987) A normal mitochondrial protein is selectively synthesized and accumulated during heat shock in Tetrahymena thermophilia. Mol Cell Biol 7:4414–4423Google Scholar
  24. McMullin TW, Hallberg RL (1988) A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli GroEL gene. Mol Cell Biol 8:371–380Google Scholar
  25. Mosse MO, Linder P, Lazowska J, Slonimski PP (1993) A comprehensive compilation of 1001 nucleotide sequences encoding proteins from the yeast Saccharomyces cerevisiae (=LIST A2). Curr Genet 23:66–91Google Scholar
  26. Mueller DM, Getz GS (1986a) Transcriptional regulation of the mitochondrial genome of yeast Saccharomyces cerevisiae. J Biol Chem 261:11756–11764Google Scholar
  27. Mueller DM, Getz GS (1986b) Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression. J Biol Chem 261:11816–11822Google Scholar
  28. Mueller DM, Biswas TK, Backer J, Edwards JC, Rabinowitz M, Getz GS (1987) Temperature sensitive pet mutants in yeast Saccharomyces cerevisiae that lose mitochondrial RNA. Curr Genet 11:359–367Google Scholar
  29. Nasmyth KA, Reed SI (1980) Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Acad Sci USA 77:2119–2123Google Scholar
  30. Reading DS, Hallberg RL, Myers AM (1989) Characterization of yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337:655–659Google Scholar
  31. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labelling deoxynucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251Google Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  33. Slonimski PP, Perrodin G, Croft J (1968) Ethidium bromide induced mutation in yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal ‘petites’. Biochem Biophys Res Common 30:232–239Google Scholar
  34. Stollet ES, Koebberl DD, Sarkar G, Sommer SS (1988) Genomic amplification with transcript sequencing. Science 239:491–494Google Scholar
  35. Treco DA (1989) In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JM, Struhl K (eds) Current Protocols in Molecular Biology, vol. 2 John Wiley and Sons, New York, pp 13.11.1–13.11.5Google Scholar
  36. Tzagoloff A, Macino G, Sebald W (1979) Mitochondrial genes and translation products. Annu Rev Biochem 48:419–443Google Scholar
  37. Vitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ (1992) Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J Biol Chem 267: 695–698Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Arunik Sanyal
    • 1
  • Alexis Harington
    • 2
  • Christopher J. Herbert
    • 2
  • Olga Groudinsky
    • 2
  • Piotr P. Slonimski
    • 2
  • Beatrice Tung
    • 3
  • Godfrey S. Getz
    • 1
    • 3
    • 4
  1. 1.Department of MedicineUniversity of ChicagoUSA
  2. 2.Centre de Genetique Moleculaire du C.N.R.S.Laboratoire propre associé a' l'Université Pierre et Marie CurieGif-sur-YvetteFrance
  3. 3.Department of PathologyUniversity of ChicagoChicagoUSA
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations