Theoretical and Applied Genetics

, Volume 72, Issue 4, pp 551–558 | Cite as

A comparative study on variability and phylogeny of Triticum species

1. Intraspecific variability
  • M. J. Asins
  • E. A. Carbonell
Article

Summary

Intraspecific variability of A, S and D genome diploid species and AAGG and AABB allotetraploid species of the genus Triticum was examined in a comparative study using isoenzymatic characters (peroxidases of embryo plus scutellum, and endosperm; and alkaline phosphatases) of dry mature seeds. The methodology followed was based on the definition of variables from characters and three functions related with total intraspecific, intrapopulational and interpopulational variabilities. The diploid species with the greatest intraspecific variability were speltoides and longissimum, and among the allotetraploid species, timopheevii. Concerning all variables, interpopulational variability was found to be greater than intrapopulational in urartu, monococcum, timopheevii, dicoccoides and sharonensis. Intraspecific variability differences found among species are discussed with reference to Nevo (1978) and a hypothesis concerning intraspecific variability differences between allotetraploids is suggested. The final objective of the present paper is to provide information on intraspecific variability differences among species for future use in discussing the interspecific relationships.

Key words

Triticum Isozymes Allopolyploids Interpopulational variability Intrapopulational variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asins MJ (1985) Variación en los patrones isoenzimáticos de peroxidasas durante el proceso de maduración de la semilla de trigo duro. Investigación Agraria. Producción y Protección Vegetal 1:39–56Google Scholar
  2. Asins MJ, Benito C, Pérez de la Vega M (1981) Endosperm peroxidase electrophoresis patterns to distinguish tetraploid from hexaploid wheats. Euphytica 30:389–392Google Scholar
  3. Asins MJ, Pérez de la Vega M (1985a) Inheritance of endosperm phosphatases in durum wheat (Triticum turgidum L.). Z Pflanzenzücht 95:319–324Google Scholar
  4. Asins MJ, Pérez de la Vega M (1985b) The inheritance of tetraploid wheat seed peroxidases. Theor Appl Genet 71:61–67Google Scholar
  5. Asins MJ, Carbonell EA (1986) A comparative study on variability and phylogeny of Triticum species. 2. Intraspecific relationships. Theor Appl Genet 72:559–568Google Scholar
  6. Benito C, Pérez de la Vega M (1979) The chromosomal location of peroxidase isoenzymes of wheat kernel. Theor Appl Genet 55:73–76Google Scholar
  7. Benito C, Pérez de la Vega M, Salinas J (1980) The inheritance of wheat kernel peroxidases. J Hered 71:416–418Google Scholar
  8. Benzecri JP (1970) Distance distributionele et metrique du chideux en analyse factorielle des correspondences. Paris Laboratoire de Statistique MathematiqueGoogle Scholar
  9. Cavalli-Sforza LL, Edwards AFW (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257Google Scholar
  10. Hart GE (1979) Genetical and chromosomal relationship among the wheats and their relatives. Stadler Symp 1:9–29Google Scholar
  11. Jacquard A (1974) The genetic structure of populations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Jaaska V (1974) The origin of tetraploid wheats on the basis of electrophoretic studies of enzymes. Biología 23:201–220Google Scholar
  13. Johnson BL, Dhaliwal HS (1976) Reproductive isolation of T. boeoticum and T. urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094Google Scholar
  14. Levin DA (1975) Genetic correlates of translocation heterozygosity in plants. BioScience 25:724–728Google Scholar
  15. Lewontin RC (1967) Population genetics. Ann Rev Genet 1:37–71Google Scholar
  16. Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenbury O, Reitz LP (eds) Wheat improvement. Monograph 13:31–50Google Scholar
  17. Nei M (1972) Genetic distances between populations. Am Nat 105:385–398Google Scholar
  18. Nei M (1974) A new measure of genetic distance. In: Crow JF, Denniston C (eds) Genetic distance. Plenum, New YorkGoogle Scholar
  19. Nevo E (1978) Genetic variation in natural populations: patterns and theory. Theor Popul Biol 13:121–177Google Scholar
  20. Nevo E, Brown AHD, Zohary D (1979) Genetic diversity in wild progenitor of barley in Israel. ExperientiaGoogle Scholar
  21. Nevo E, Golenberg E, Beiles A, Brown AHD, Zohary D (1982) Genetic diversity and evironmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 62:241–254Google Scholar
  22. Powell JR (1975) Protein variation in natural populations of animals. In: Dobshansky TH, Hech MK, Steere WC (eds) Evolutionary biology, vol. 8. Plenum, New York, pp 79–119Google Scholar
  23. Salinas J, Benito C, Pérez de la Vega M (1981) The chromosomal location of phosphatase isozymes of the wheat endosperm. Experientia 37:557–558Google Scholar
  24. Sears ER (1975) The wheat and their relatives. In: King RC (ed) Handbook of genetics, vol 2. Plenum, New YorkGoogle Scholar
  25. Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Am Nat 91:337–354Google Scholar
  26. Templeton AR, Salle R de, Balbolt V (1981) Speciation and inferences on rates of molecular evolution from genetic distances. Heredity 47:439–442Google Scholar
  27. Zohary D (1966) The evolution of genomes in Aegilops and Triticum In: Mackey J (ed) Proc 2nd Int Wheat Genet Symp. Hereditas (Suppl) 2:207–217Google Scholar
  28. Zohary D (1983) Wild genetic resources of crops in Israel. Israel Bot 32:97–127Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. J. Asins
    • 1
  • E. A. Carbonell
    • 2
  1. 1.Departamento de Genetica, Facultad de BiologiaUniversidad ComplutenseMadridSpain
  2. 2.Instituto Nacional de Investigaciones AgrariasMadridSpain

Personalised recommendations