Advertisement

Periodic solutions of difference-differential equations

  • K. P. Hadeler
  • J. Tomiuk
Article

Summary

The existence theorem of R. Nussbaum for periodic solutions of difference-differential equations is generalized to equations with a damping term. The study of such equations is motivated by recent theories of neural interactions in certain compound eyes.

Keywords

Neural Network Complex System Periodic Solution Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, G. S., The existence of periodic solutions of f′(x)=−f(x−1)(1+f(x)), J. Math. Anal. Appl. 5, 435–450 (1962).Google Scholar
  2. 2.
    Grafton, R. B., A periodicity theorem for autonomous functional differential equations, J. Diff. Eqs. 6, 87–109 (1969).Google Scholar
  3. 3.
    Nussbaum, R. D., Periodic solutions of some nonlinear autonomous functional differential equations, Annali di Matematica, Ser. 4, 51, 263–306 (1974).Google Scholar
  4. 4.
    Browder, F. E., A further generalization of the Schauder fixed point theorem, Duke Math. J. 32, 575–578 (1965).Google Scholar
  5. 5.
    Chow, S.-N., Existence of periodic solutions of autonomous functional differential equations, J. Diff. Eqs. 15, 350–378 (1974).Google Scholar
  6. 6.
    Walther, H.-O., Existence of a non-constant periodic solution of a non-linear autonomous functional differential equation representing the growth of a single species population, J. Math. Biol. 1, 227–240 (1975).Google Scholar
  7. 7.
    Hartline, H. K., Studies on excitation and inhibition in the retina, Chapman and Hall, London (1974).Google Scholar
  8. 8.
    Morishita, I., & Yajima, A., Analysis and simulation of networks of mutually inhibiting neurons, Kybernetik 11, 154–165 (1972).Google Scholar
  9. 9.
    Hadeler, K. P., On the theory of lateral inhibition, Kybernetik 14, 161–165 (1974).Google Scholar
  10. 10.
    Reichardt, W., & MacGinitie, G., Zur Theorie der lateralen Inhibition, Kybernetik 1, 155–165 (1962).Google Scholar
  11. 11.
    Coleman, B. D., & Renninger, G. H., Theory of delayed lateral inhibition in the compound eye of Limulus, Proc. Nat. Acad. Sci. 71, 2887–2891 (1974).Google Scholar
  12. 12.
    Coleman, B. D., & Renninger, G. H., Consequences of delayed lateral inhibition in the retina of Limulus. I. Elementary theory of spatially uniform fields, J. Theor. Biol. 51, 243–265 (1975).Google Scholar
  13. 13.
    Coleman, B. D., & Renninger, G. H., Consequences of delayed lateral inhibition in the retina of Limulus. II. Theory of spatially uniform fields, assuming the 4-point property, J. Theor. Biol. 51, 267–291 (1975).Google Scholar
  14. 14.
    Coleman, B. D., & Renninger, G. H., Periodic solutions of certain nonlinear integral equations with a time-lag, SIAM J. Appl. Math. 31, 111–120 (1976).Google Scholar
  15. 15.
    Coleman, B. D., & Renninger, G. H., Periodic solutions of a nonlinear functional equation describing neural action, Istituto Lombardo Accad. Sci. Lett. Rend. A, 109, 91–111 (1975).Google Scholar
  16. 16.
    Coleman, B. D., & Renninger, G. H., Theory of the response of the Limulus retina to periodic excitation, J. Math. Biol. 53, 103–119 (1976).Google Scholar

Added in proof

  1. 17.
    Kaplan, J. L., & Yorke, A. J., Existence and stability of periodic solutions of \(\dot x\)(t)=−f(x(t), x(t−1)), in Dynamical Systems, Cesari et al. (ed.), Providence 1974.Google Scholar
  2. 18.
    Pesin, J. B., On the behavior of a strongly nonlinear differential equation with retarded argument. Differentsialnye Uravnenija 10, 1025–1036 (1974).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • K. P. Hadeler
    • 1
  • J. Tomiuk
    • 1
  1. 1.Lehrstuhl für BiomathematikUniversität TübingenTübingen

Personalised recommendations