Acta Informatica

, Volume 15, Issue 3, pp 309–318

Persistence of vector replacement systems is decidable

  • Ernst Mayr
Article

Summary

In a persistent vector replacement system (VRS) or Petri net, an enabled transition can become disabled only by firing itself. Here, an algorithm is presented which allows to decide whether an arbitrary VRS is persistent or not, and if so, to construct a semilinear representation of the set of states reachable in the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, T., Kasami, T.: Decidable problems on the strong connectivity of Petri net reachability sets. Theor. Comput. Sci 4, 99–119 (1977)Google Scholar
  2. 2.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35, 413–422 (1913)Google Scholar
  3. 3.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific J. Math. 16, 285–296 (1966)Google Scholar
  4. 4.
    Hack, M.: Decision problems for Petri nets and vector addition systems. M.I.T., Project MAC, MAC-TM 59 (1975)Google Scholar
  5. 5.
    Hack, M.: Decidability questions for Petri nets. M.I.T., LCS, TR 161 (1976)Google Scholar
  6. 6.
    Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. System Sci. 3, 147–195 (1969)Google Scholar
  7. 7.
    Keller, R.M.: Vector replacement systems: A formalism for modelling asynchronous systems. Princeton University, CSL, TR 117 (1972)Google Scholar
  8. 8.
    Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In: Parallel processing. (T.Y. Feng, ed.) Proceedings Sagamore Computer Conference. Lecture Notes in Computer Sciences, Vol. 24, pp. 102–112. Berlin Heidelberg New York: Springer, 1975Google Scholar
  9. 9.
    Landweber, L.H., Robertson, E.L.: Properties of conflict free and persistent Petri nets. J. Assoc. Comput. Mach. 25, 352–364 (1978)Google Scholar
  10. 10.
    Lipton, R.J., Miller, R.E., Snyder, L.: Synchronization and computing capabilities of linear asynchronous structures. Proc. 16th Ann. Symp. on FOCS. IEEE Computer Society 1975, pp. 19–28Google Scholar
  11. 11.
    Müller, H.: Decidability of reachability in persistent vector replacement systems. In: Mathematical Foundations of Computer Science 1980. Proceedings of the 9th Symposium in Rydzyna. (P. Dembinski, ed.) Lecture Notes in Computer Sciences, Vol. 88, pp. 426–438. Berlin Heidelberg New York: Springer (1980)Google Scholar
  12. 12.
    Muller, D.E., Bantky, M.S.: A theory of asynchronous circuits. Proc. Int. Symp. on Theory of Switching. Cambridge, MA: Harvard Univ. Press, p. 204–243, 1959Google Scholar
  13. 13.
    Oppen, D.C.: A 318-01 upper bound on the complexity of Presburger arithmetic. J. Comput. System Sci. 16, 323–332 (1978)Google Scholar
  14. 14.
    Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)Google Scholar
  15. 15.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Compte-Rendus du I. Congrès des Mathématiciens des pays Slavs, Warsaw, p. 92–101, 1930Google Scholar
  16. 16.
    Rosen, B.: Tree manipulating systems and Church-Rosser theorems. J. Assoc. Comput. Mach. 20, 160–187 (1973)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ernst Mayr
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2Germany (Fed. Rep.)
  2. 2.Laboratory for Computer ScienceM.I.T.CambridgeUSA

Personalised recommendations