Advertisement

Theoretical and Applied Genetics

, Volume 76, Issue 1, pp 81–92 | Cite as

Genetic evaluation with data presenting evidence of mixed major gene and polygenic inheritance

  • I. Hoeschele
Article

Summary

A procedure for genetic evaluation with field data is proposed for situations in which there is mixed major gene and polygenic inheritance and the major genotype membership of some or of all individuals is unknown. Location parameters (fixed environmental, major genotype and polygenic effects), major genotype frequencies and variance components are estimated by the modal values of joint and marginal posterior distributions. The method is described for continuous and discontinuous data as well as for univariate and multivariate evaluations. Results from a simulation study are presented.

Key words

Major genes Estimation of breeding values Mixed inheritance Bayesian inference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer, Berlin Heidelberg New York Tokyo, 217 ppGoogle Scholar
  2. Bonney GE (1984) On the statistical determination of major gene mechanisms in continuous human traits: Regressive models. Am J Med Genet 18: 731Google Scholar
  3. Bonney GE (1986) Regressive logistic models for familial disease and other binary traits. Biometrics 42:611Google Scholar
  4. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading, Mass, 588 ppGoogle Scholar
  5. Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21:523Google Scholar
  6. Falconer DS (1965) The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet 29:51Google Scholar
  7. Foulley JL, Calomiti S, Gianola D (1982) Ecriture des équations du BLUP multicaractères. Genet Sel Evol 14:309Google Scholar
  8. Foulley JL, Gianola D, Planchenault D (1986) Sire evaluation with uncertain paternity. Genet Sel Evol 19:83Google Scholar
  9. Foulley JL, Gianola D, Im S (1987 a) Genetic evaluation of traits distributed as poisson binomial with reference to reproductive characters. Theor Appl Genet 17:870Google Scholar
  10. Foulley JL, Gianola D, Im S, Hoeschele I (1987 b) Empirical Bayes estimation of parameters for n polygenic binary traits. Genet Sel Evol 19:197Google Scholar
  11. Geysser S (1982) Bayesian Discrimination. In: Krishnaiah R, Kananl L (eds) Handbook of statistics, vol 2. Amsterdam, North-Holland, pp 101–120Google Scholar
  12. Gianola D, Foulley JL (1983) Sire evaluation of ordered categorial data with a threshold model. Genet Sel Evol 15:201Google Scholar
  13. Gianola D, Fernando RL (1986) Bayesian methods in animal breeding theory. J Anim Sci 63:217Google Scholar
  14. Gianola D, Foulley JL, Fernando RL (1986) Prediction of breeding values when variances are not known. In: Dickerson GE, Johnson RK (eds) Proc 3rd World Congr Genet Appl Liv Prod Agric Commun. University of Nebraska, Lincoln, Neb, XII:356Google Scholar
  15. Gianola D, Im S, Fernando RL, Foulley JL (1988) Mixed model methodology and the Box-Cox theory of transformations: A Bayesian approach. In: Gianola D, Hammond K (eds) Advances in statistical methods for genetic improvement of livestock. Springer, Berlin Heidelberg New York (in press)Google Scholar
  16. Hanset R (1982) Major genes in animal production, examples and perspectives: cattle and pigs. In: 2nd World Congr Genet Appl Liv Prod, vol VI. Publicaciones Agrarias, Madrid (Spain), p 439Google Scholar
  17. Harville DA, Mee RW (1984) A mixed model procedure for analyzing ordered categorial data. Biometrics 40:393Google Scholar
  18. Henderson CR (1973) Sire evaluation and genetic trends. Proc Anim Breed Genet Symp in honor of Dr JL Lush, Blacksburg, Virginia, July 29, 1972, 10–41, ASAS-ADSA. Champaign, IllGoogle Scholar
  19. Hoeschele I (1988) Statistical techniques for detection of major genes in animal breeding data. Submitted to Theor Appl GenetGoogle Scholar
  20. Hoeschele I, Foulley JL, Colleau JJ, Gianola D (1986) Genetic evaluation for multiple binary responses. Genet Sel Evol 18:299Google Scholar
  21. Hoeschele I, Gianola D, Foulley JL (1987) Estimation of variance components with quasi-continuous data using Bayesian methods. J Anim Breed Genet 104:334Google Scholar
  22. Kennedy NJ, Gentle JE (1980) Statistical computing. Marcel Dekker, New York Basel, 591 ppGoogle Scholar
  23. Morton NE, McLean CJ (1974) Analysis of family resemblance. III. Complex segregation of quantitative traits. Am J Hum Genet 26:489Google Scholar
  24. Roberts RC, Smith C (1982) Genes with large effects-theoretical aspects in livestock breeding. In: 2nd World Congr Genet Appl Liv Prod, vol VI. Publicaciones Agrarias, Madrid (Spain), p 420Google Scholar
  25. Searle SR (1971) Linear models. Wiley and Sons, New YorkGoogle Scholar
  26. Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley and Sons, Chichester New York Brisbane Toronto Singapore, 243 ppGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • I. Hoeschele
    • 1
  1. 1.Department of Animal ScienceIowa State UniversityAmesUSA

Personalised recommendations