Advertisement

Theoretical and Applied Genetics

, Volume 78, Issue 2, pp 161–168 | Cite as

Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants

  • S. Misra
  • L. Gedamu
Originals

Summary

A chimeric gene containing a cloned human metallothionein-II (MT-II) processed gene was introduced into Brassica napus and Nicotiana tabacum cells on a disarmed Ti-plasmid of Agrobacterium tumefaciens. Transformants expressed MT protein as a Mendelian trait and in a constitutive manner. Seeds from self-fertilized transgenic plants were germinated on media containing toxic levels of cadmium and scored for tolerance/ susceptibility to this heavy metal. The growth of root and shoot of transformed seedlings was unaffected by up to 100 μM CdCl2, whereas control seedlings showed severe inhibition of root and shoot growth and chlorosis of leaves. The results of these experiments indicate that agriculturally important plants such as B. napus can be genetically engineered for heavy metal tolerance/sequestration and eventually for partitioning of heavy metals in non-consumed plant tissues.

Key words

Brassica napus Transgenic Heavy metal tolerance Human metallothionein gene Ti-plasmid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Council for Agricultural Science and Technology (1980) Effects of sewage sludge on the Cadmium and Zinc content of crops. Report No. 83, Ames pp 1–36Google Scholar
  2. DeBlock M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3:1681–1684Google Scholar
  3. Durnam DM, Perrin F, Gannon F, Palmiter RD (1980) Isolation and characterization of the mouse metallothionein-I gene. Proc Natl Acad Sci USA 77:6511–6515Google Scholar
  4. Fillati JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene in tomato using a binary Agrobacterium tumefaciens vector. Bio/Technol 5:726–730Google Scholar
  5. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566Google Scholar
  6. Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick J, Fink CL, Hoffman NL, Sanders PR (1985) The SEV system: a new disarmed Ti-plasmid vector system for plant transformation. Bio/Technol 3:629–635Google Scholar
  7. Friberg L, Piscator M, Nordberg GF, Kjellstrom T (1974) In: Friberg L, Piscator M, Nordberg GF, Kjellstrom T (eds) Cadmium in the environment. CRL, Cleveland, pp 9–21Google Scholar
  8. Gemmell RP (1977) Colonization of industrial wastelands. Arnold, London, pp 1–67Google Scholar
  9. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: The principle heavy-metal complexing peptides of higher plants. Science 230:674–676Google Scholar
  10. Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443Google Scholar
  11. Harrison BD, Mayo MA, Boulcombe DC (1987) Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328:799–802Google Scholar
  12. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498Google Scholar
  13. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231Google Scholar
  14. Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ (1987) Poly (γ-glutamyl cysteinyl) glycine, its role in cadmium resistance in plant cells. Proc Natl Acad Sci USA 84:6619–6623Google Scholar
  15. Kagi JHR, Nordberg M (1979) Metallothioneins. Birkhäuser, BaselGoogle Scholar
  16. Klimaszewska K, Killer A (1985) High frequency plant regeneration from thin cell layer expiants of B. napus. Plant Cell Tissue Org Cult 4:183–197Google Scholar
  17. Lefebvre DD, Miki BL, Laliberte JF (1987) Mammalian metallothionein functions in plants. Bio/Technol 5:1053–1056Google Scholar
  18. Lichtenstein C, Draper J (1985) Genetic engineering of plants: In: Glover DM (ed) DNA Cloning, vol II. IRL Press, Oxford, Washington/DC, pp 67–120Google Scholar
  19. Maiti IB, Hunt AG, Wagner GJ (1988) Seed transmissible expression of mammalian metallothionein in transgenic tobacco. Biochem Biophys Res Comm 150:640–647Google Scholar
  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor/NYGoogle Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  22. Petolino JG, Collins GB (1984) Cellular approaches to environmental stress resistance. In: Collins GB, Petolino JG (eds) Applications of genetic engineering to crop improvement. Nijhoff/W Junk, Boston Dordrecht, pp 341–499Google Scholar
  23. Powell Abel P, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743Google Scholar
  24. Price-Haughey J, Bonham K, Gedamu L (1987) Metallothionein gene expression in fish cell lines: its activation in embryonic cells by 5-azacytidine. Biochem Biophys Acta 908:158–168Google Scholar
  25. Rauser WE (1986) The amount of cadmium associated with Cd binding protein in roots of Agrostis gigantea, maize and tomato. Plant Sci 43:85–91Google Scholar
  26. Rogers SG, Fraley R, Horsch R, Flick J, Brand L, Sanders P (1986) In: Zaitlin M, Day P, Hollander A (eds) Biotechnology in plant science: Relevance to agriculture in the nineteen eighties. Academic Press, New York, pp 219–230Google Scholar
  27. Sanders PR, Winters JA, Barnason AR, Rogers SG, Fraley RT (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res 15:1543–1558Google Scholar
  28. Sanger F, Nicklen S, Coulsen AR (1977) DNA sequencing and chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  29. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in plants. Science 233:478–481Google Scholar
  30. Sherlock JC (1984) Cadmium in foods and the diet. Experientia 40:152–156Google Scholar
  31. Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37Google Scholar
  32. Van Bruwane R, Kirchmann R, Impens R (1984) Cadmium contamination in agriculture and zootechnology. Experientia 40:43–51Google Scholar
  33. Varma MM, Katz HM (1978) Environmental impact of Cadmium. J Environ Health 40:308–314Google Scholar
  34. Varshney U, Gedamu L (1984) Human metallothionein MT-I and MT-II processed genes. Gene 31:135–145Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. Misra
    • 1
  • L. Gedamu
    • 2
  1. 1.Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaCanada
  2. 2.Department of BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations