, Volume 10, Issue 1, pp 58–60 | Cite as

Holographic aspects of temporal memory and optomotor responses

  • A. Borsellino
  • T. Poggio


A mathematical analogy between the holographic models of temporal memory and Reichardt's optomotor theory is stressed. It is pointed out that the sequence of operations which is essential to any holographic model of brain functioning is actually carried out by a nervous structure in the optomotor behaviour.

Some implications in both the optomotor theory and the hypothesis of neural holographic processes are further suggested.


Holographic Model Nervous Structure Brain Functioning Temporal Memory Optomotor Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-Lamina projections. Exp. Brain Res. 3, 271 (1967).Google Scholar
  2. Gabor, D.: Holographic model of temporal recall. Nature (Lond.) 217, 584 (1968a).Google Scholar
  3. — Improved holographic model of temporal recall. Nature (Lond.) 217, 1288 (1968b).Google Scholar
  4. — Associative holographic memories. IBM J. Res. Devel. 13, 2 (1969).Google Scholar
  5. Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 6, 199 (1968).Google Scholar
  6. Greguss, P.: Biolography, a new model of information processing. Nature (Lond.) 219, 482 (1968).Google Scholar
  7. Heerden, P.J., van: Models for the brain. Nature (Lond.) 225, 177 (1970).Google Scholar
  8. Kirschfeld, K.: Die Projection der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248 (1967).Google Scholar
  9. - Personal communication (May 1971).Google Scholar
  10. Longuet-Higgins, H.C.: Holographic model of temporal recall. Nature (Lond.) 217, 104 (1968).Google Scholar
  11. Reichardt, W.: Autokorrelationsauswertung als Funktionsprinzip des Zentralnervensystems. Z. Naturforsch. 12b, 448 (1957).Google Scholar
  12. — Movement perception in insects. Processing of optical data by organisms and machines. Proceedings of the international School of Physics E. Fermi, Course XLIII (ed. W. Rei-chardt). New York: Acad. Press 1969.Google Scholar
  13. Strausfeld, N.J., Braitenberg, V.: The compound eye of the fly (Musca domestica): Connections between the cartridges of the Lamina Ganglionaris. Z. vergl. Physiol. 70, 95 (1970).Google Scholar
  14. Stroke, G.W.: Principles of holography. New York: Wiley 1969.Google Scholar
  15. Watson, C.J.H.: Plasma echo and spin echo holophones. Nature (Lond.) 229, 28 (1971).Google Scholar
  16. Westlake, P. R.: The possibilities of neural holographic processes within the brain. Kybernetik, 7, 129 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • A. Borsellino
    • 1
    • 2
  • T. Poggio
    • 1
    • 2
  1. 1.Istituto di Scienze FisicheGenovaItaly
  2. 2.Laboratorio di Cibernetica e Biofisica del CNRCamogliItaly

Personalised recommendations