, Volume 10, Issue 1, pp 32–37 | Cite as

The role of inhibition and adaptation in sensory information processing

  • E. Harth
  • G. Pertile


Some common features of neural transformations along sensory pathways are discussed. The emphasis is on spatial mapping in the visual system, but close parallels exist in temporal visual mapping as well as other sensory systems. The role played by lateral inhibition in sequential transformations is investigated by direct computation and by mathematical analysis.


Information Processing Sensory System Visual System Direct Computation Mathematical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arden, G. B.: Types of response and organization of simple receptive fields in cells of the rabbit's lateral geniculate body. J. Physiol. (Lond.) 166, 449 (1963).Google Scholar
  2. Attnaeve, F.: Informational aspects of visual perception. Psychol. Rev. 61, 183 (1954).Google Scholar
  3. Barlow, H. B.: Action potentials from the frog's retina. J. Physiol. (Lond.) 119, 58 (1953a).Google Scholar
  4. — Summation and inhibition in the frog's retina. J. Physiol. (Lond.) 118, 69 (1953b).Google Scholar
  5. — Three points about lateral inhibition. In: Sensory communication (W. A. Rosenblith, ed.). New York: Wiley & Sons, Inc. 1961.Google Scholar
  6. Baumgartner, G., Brown, J. L., Schulz, A.: Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1 (1965).Google Scholar
  7. Beek, B.: Analysis of receptive fields of vertebrate retina by computer simulation. Dissertation, Syracuse University, Syracuse, N.Y. 1970.Google Scholar
  8. Békésy, G. v.: Neural funneling along the skin and between inner and outer haircells of the cochlea. J. acoust. Soc. Amer. 31, 1236 (1959).Google Scholar
  9. — Neural inhibitory units of the eye and skin. Quantitative description of contrast phenomena. J. opt. Soc. Amer. 50, 1060 (1960).Google Scholar
  10. Burns, B. D.: The mammalian cerebral cortex. London: Edward Arnold, Ltd. 1958.Google Scholar
  11. Creutzfeldt, O., Lux, H. D., Nacimiento, A. C.: Intracelluläre Reizung corticaler Nervenzellen. Pflügers Arch. ges. Physiol. 281, 129 (1964).Google Scholar
  12. Eccles, J. C.: Cerebral synaptic mechanisms. In: Brain and conscious experience (J. C. Eccles, ed.). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  13. Fuortes, M. G. F.: Electrical activity of the cells of limulus. Amer. J. Ophthal. 46, part II, 210 (1958).Google Scholar
  14. — Initiation of impulses in visual cells of limulus. J. Physiol. (Lond.) 148, 14 (1959).Google Scholar
  15. Fuster, T. M., Herz, A., Creutzfeldt, O. D.: Interval analysis of cell discharge in spontaneous and optically modulated activity in the visual system. Arch. ital. Biol. 103, 159 (1965).Google Scholar
  16. Granit, R.: Receptors and sensory perception. New Haven: Yale Univ. Press 1962.Google Scholar
  17. — Kernell, D., Shortess, G. K.: Quantitative aspects of repetitive firing of mammalian motoneurons, as caused by injected currents. J. Physiol. (Lond.) 168, 1911 (1963).Google Scholar
  18. Harth, E., Beck, B., Pertile, G., Young, F.: Signal stabilization and noise suppression in neural systems. Kybernetik 7, 112 (1970).Google Scholar
  19. Hartline, H. K.: Inhibition of activity of visual receptors by illuminating nearby retinal areas in the limulus eye. Fed. Proc. 8, 69 (1949).Google Scholar
  20. Hubel, D. M., Wiesel, T. N.: Receptive fields of single neurons in the cat's striate cortex. J. Physiol. (Lond.) 148, 574 (1959).Google Scholar
  21. — Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 155, 385 (1961).Google Scholar
  22. Katsuki, Y.: Neural mechanism of auditory sensation in cats. In: Sensory communication (W. A. Rosenblith, ed.). New York: John Wiley & Sons, Inc. 1961.Google Scholar
  23. Kuffler, S. W.: Neurons in the retina; organization, inhibition and excitation problems. Cold Spr. Harb. Symp. quant. Biol. 17, 281 (1952).Google Scholar
  24. — Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37 (1953).Google Scholar
  25. Mach, E.: Über die physiologische Wirkung räumlich verteilter Lichtreize. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 54, Abt. 2, 393 (1866).Google Scholar
  26. Mountcastle, V. B., Powell, T. P. S.: Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull. Johns Hopk. Hosp. 105, 201 (1959).Google Scholar
  27. Perkel, D. H., Bullock, T. H.: Neural coding. Neurosci. Res. Prog. Bull. 6, 221 (1968).Google Scholar
  28. Pertile, G., Harth, E.: A model of adaptation based on relaxation phenomena in the neural membrane. Kybernetik 9, 189–195 (1971).Google Scholar
  29. Ratliff, F.: Inhibitory interaction. In: Sensory communication (W. A. Rosenblith, ed.). New York: Wiley & Sons, Inc. 1961.Google Scholar
  30. — Mach bands: quantitative studies on neural networks in the retina. Pages 132ff. San Francisco, London and Amsterdam: Holden-Day, Inc. 1965.Google Scholar
  31. Sherrington, C. S.: The integrative action of the nervous system. New York: Scribner 1906.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • E. Harth
    • 1
  • G. Pertile
    • 1
  1. 1.Physics DepartmentSyracuse UniversitySyracuseUSA

Personalised recommendations