Archives of Microbiology

, Volume 160, Issue 2, pp 152–157 | Cite as

Chemolithoutotrophic growth of Thiothrix ramosa

  • Elena V. Odintsova
  • Ann P. Wood
  • Don P. Kelly
Original Papers


Thiothrix has been shown for the first time to be able to grow chemolithoautotrophically with thiosulphate or carbon disulphide as sole energy substrate. Thiosulphate served as the growth-limiting substrate for Thiothrix ramosa in chemostat culture. Maximum growth yield (Ymax) from yields at growth rates between 0.029–0.075 h-1 was 4.0 g protein/mol thiosulphate oxidized. The key enzyme of the Calvin cycle, ribulose 1,5-bisphosphate carboxylase, was present in these cells, as were rhodanese, adenylyl sulphate (APS) reductase and ‘sulphur-oxidizing enzyme’. Thiosulphate-grown cells oxidized thiosulphate, sulphide, tetrathionate and carbon disulphide. Oxidation kinetics for sulphide, thiosulphate and tetrathionate were biphasic: oxygen consumption during the fast first phase of oxidation indicated oxidation of sulphide, and the sulphane moieties of thiosulphate and tetrathionate, to elemental sulphur, before further oxidation to sulphate. Kinetic constants for these four substrates were determined. T. ramosa also grew mixotrophically in batch culture on lactate with a number of organic sulphur compounds: carbon disulphide, methanethiol and diethyl sulphide. Substituted thiophenes were also used as sole substrates. The metabolic versatility of T. ramosa is thus much greater than previously realised.

Key words

Thiothrix ramosa Chemolithoautotrophy Chemostat Ribulose bisphosphate carboxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bland JA, Staley JT (1978) Observations on the biology of Thiothrix. Arch Microbiol 117: 79–87Google Scholar
  2. Bowen TJ, Butler PJ, Happold FC (1965) Some properties of the rhodanese system of Thiobacillus denitrificans. Biochem J 97: 651–657Google Scholar
  3. Bowen TJ, Happold FC, Taylor BF (1966) Studies on adenosine 5′-phosphosulfate reductase from Thiobacillus denitrificans. Biochim Biophys Acta 118: 566–576Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Chem 72: 248–254Google Scholar
  5. Charles AM, Suzuki I (1966) Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim Biophys Acta 128: 510–521Google Scholar
  6. Kanagawa T, Kelly DP (1987) Degradation of substituted thiophenes by bacteria isolated from activated sludge. Microb Ecol 13: 47–57Google Scholar
  7. Kanagawa T, Dazai M, Fukuoka S (1982) Degradation of 0,0-dimethyl-phosphorodithioate by Thiobacillus thioparus TK-1 and Pseudomonas AK-2. Agric Biol Chem 46: 2571–2578Google Scholar
  8. Keil F (1912) Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitr Biol Pflanz 11: 335–372Google Scholar
  9. Kelly DP, Smith NA (1990) Organic sulfur compounds in the environment. Biogeochemistry, microbiology, and ecological aspects. Adv Microb Ecol 11: 345–385Google Scholar
  10. Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulphate and tetrathionate. Anal Chem 41: 898–901Google Scholar
  11. Kelly DP, Mason J, Wood AP (1987) Energy metabolism in chemolithotrophs. In: Verseveld HWvan, Duine JA (eds) Microbial growth on C1 compounds. Martinus Nijhoff, Dordrecht, pp 186–194Google Scholar
  12. Kelly DP, Malin G, Wood AP (1993) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Murrell JC, Kelly DP (eds) Microbial metabolism of C1 compounds. Intercept, Andover, UK, pp 47–63Google Scholar
  13. Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova YP, Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292Google Scholar
  14. Larkin JM (1989) Genus II. Thiothrix Winogradsky 1888. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systernatic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2098–2101Google Scholar
  15. Larkin JM, Shinabarger DL (1983) Characterization of Thiothrix nivea. Int J Syst Bacteriol 33: 841–846Google Scholar
  16. Larkin JM, Strohl WR (1983) Beggiatoa, Thiothrix, and Thioploca. Annu Rev Microbiol 37: 341–367Google Scholar
  17. Morita RY, Burton SD (1965) Filamentous appendages of Thiothrix. Z Allg Mikrobiol 5: 177–179Google Scholar
  18. Nelson DC (1989) Physiology and biochemistry of filamentous sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech/Springer, Madison Berlin, pp 219–238Google Scholar
  19. Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147: 140–154Google Scholar
  20. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136: 262–269Google Scholar
  21. Nelson DC, Jorgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52: 225–233Google Scholar
  22. Nelson DC, Williams CA, Farah BA, Shively JM (1989) Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains. Arch Microbiol 151: 15–19Google Scholar
  23. Odintsova EV (1991) Characterization of Thiothrix ramosa nov. sp. PhD thesis, Moscow (Academy of Sciences, Institute of Microbiology)Google Scholar
  24. Odintsova EV, Dubinina GA (1990) New filamentous colourless sulphur bacteria Thiothrix ramosa nov. sp. Mikrobiologiia 59: 637–644Google Scholar
  25. Odintsova EV, Dubinina GA (1991) The growth cycle, reproduction and ultrastructure of Thiothrix ramosa. Mikrobiologiia 60: 314–320Google Scholar
  26. Odintsova EV, Dubinina GA (1993) The role of reduced sulphur compounds in the metabolism of Thiothrix ramosa. Mikrobiologiia 62: 213–222Google Scholar
  27. Overmann J, Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158: 59–67Google Scholar
  28. Pringsheim EG (1967) Die Mixotrophie von Beggiatoa. Arch Microbiol 59: 247–254Google Scholar
  29. Rabenhorst L (1865) Flora europaea algarum aquae dulcis submarinae, section II. Kummer, Leipzig, p 94Google Scholar
  30. Schmidt TM, Arieli B, Cohen Y, Padan E, Strohl WR (1987) Sulfur metabolism in Beggiatoa alba. J Bacteriol 169: 5466–5472Google Scholar
  31. Shively JM, Devore W, Stratford L, Porter L, Medlin L, Stevens SEJr (1986) Molecular evolution of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). FEMS Microbiol Lett 37: 251–257Google Scholar
  32. Smith AJ, Lascelles J (1966) Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42: 357–370Google Scholar
  33. Smith DW, Strohl WR (1991) Sulfur-oxidizing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, London, pp 121–146Google Scholar
  34. Smith NA, Kelly DP (1988) Oxidation of carbon disulphide as the sole cource of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol 134: 3041–3048Google Scholar
  35. Sörbo B (1953) Crystalline rhodanese. I. Purification and physicochemical examination. Acta Chem Scand 7: 1129–1136Google Scholar
  36. Strohl WR, Schmidt TM (1984) Mixotrophy of colorless, sulfideoxidizing gliding bacteria Beggiatoa and Thiothrix. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State University Press, Columbus, Ohio, USA, pp 79–95Google Scholar
  37. Suzuki I (1965) Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. Biochim Biophys Acta 104: 359–371Google Scholar
  38. Suzuki I, Silver M (1966) The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli. Biochim Biophys Acta 122: 22–33Google Scholar
  39. Taylor BF (1968) Oxidation of elemental sulfur by an enzyme system from Thiobacillus neapolitanus. Biochim Biophys Acta 170: 112–122Google Scholar
  40. Trüper HG, Pfennig N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek. J Microbiol Serol 32: 261–276Google Scholar
  41. Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans. Arch Microbiol 88: 285–298Google Scholar
  42. VanGemerden H (1986) Production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146: 52–56Google Scholar
  43. Williams TM, Unz RF (1985) Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa and Eikelboom type 021N strains. Appl Environ Microbiol 49: 887–898Google Scholar
  44. Winogradsky S (1888) Beiträge zur Morphologie und Physiologie der Bakterien. I. Zur Morphologie und Physiologie der Schwefelbakterien. Felix, Leipzig. Republished as: Contribution à la morphologie et physiologie des sulfobactéries. In: Winogradsky S (ed) Microbiologie du sol Masson, Paris, pp 83–126Google Scholar
  45. Wood AP, Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch Microbiol 144: 71–77Google Scholar
  46. Wood AP, Kelly DP (1989) Isolation and physiological characterisation of Thiobacillus thyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasira flexuosa. Arch Microbiol 152: 160–166Google Scholar
  47. Zavarzin GA (1989) Sergei N Winogradsky and the discovery of chemo-synthesis. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech/Springer, Madison Berlin, pp 17–32Google Scholar

Copyright information

© Springer Verlag 1993

Authors and Affiliations

  • Elena V. Odintsova
    • 1
  • Ann P. Wood
    • 1
  • Don P. Kelly
    • 2
  1. 1.Division of Life SciencesKing's College LondonLondonUK
  2. 2.Natural Environment Research CouncilSwindonUK

Personalised recommendations