, Volume 6, Issue 1, pp 13–22 | Cite as

Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca

  • K. Kirschfeld
  • N. Franceschini


In the ommatidia of Musca, the light flux transmitted by each one of the rhabdomeres of sense cells no. 1 to 6 decreases as a function of time if light falls onto these rhabdomeres. With a similar time course the light flux reflected from these rhabdomeres increases. These changes take place within a few seconds following illumination. The results have been established in the intact animal using changes in the appearance of the pseudopupil as indicator and also in surviving preparations of the eye with direct inspection of the rhabdomeres.

The changes are interpreted as a consequence of interactions between pigment granules in the sense cells and electromagnetic fields induced outside the rhabdomeres by light travelling on the inside: In the dark adapted situation the granules are quite distant from the rhabdomeres, the interaction is negligible. During light adaptation the granules move close to the rhabdomeres, and as a consequence, total reflection of the light in the rhabdomere is frustrated. The relatively rapid changes in the optical characteristics of the rhabdomeres are explained by the fact that the distance, the granules have to move in order to switch from one condition to the other is in principle on the order of the wavelength of light.

The results indicate, that the changes in the position of the granules are induced by the excitation of the respective sense cells themselves, for instance by the degree of their depolarisation. No interaction between the sense cells of one ommatidium nor between those of different ommatidia could be found.

The function of the movement of the pigment granules is interpreted as a means to protect the sense cells no. 1 to 6 against strong illumination. — Movement of pigment granules is not induced in sense cells no. 7 and 8 with light intensities which give maximal response in sense cells no. 1 to 6.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barer, R.: Refractometry and interferometry of living cells. J. opt. Soc. Amer. 47, 545–556 (1967).Google Scholar
  2. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-Lamina projections. Exp. Brain Res. 3, 271–298 (1967).Google Scholar
  3. Demoll, R.: Über eine lichtzersetzliche Substanz im Facettenauge, sowie über eine Pigmentwanderung im Appositionsauge. Pflügers Arch. ges. Physiol. 129, 461–475 (1909).Google Scholar
  4. Eguchi, E., and T. H. Waterman: Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79, 209–229 (1967).Google Scholar
  5. Fermi, G., u. W. Reichardt: Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2, 15–28 (1963).Google Scholar
  6. Fernandez-Morán, H.: Fine structure of the light receptors in the compound eyes of insects. Exp. Cell Res., Suppl. 5, 586–644 (1958).Google Scholar
  7. Franceschini, N., and K. Kirschfeld: An automatic gain control in the photoreceptors of diptera. Kybernetik (in preparation).Google Scholar
  8. Goldsmith, T. H., and D. E. Philpott: The microstructure of compound eyes in insects. J. biophys. biochem. Cytol. 3, 429–440 (1957).Google Scholar
  9. Horridge, G. A., and P. B. T. Barnard: Movement of palisade in Locust retinula cells when illuminated. Quart. J. micr. Sci. 106, 131–135 (1965).Google Scholar
  10. Jörschke, H.: Die Facettenaugen der Orthopteren und Termiten. Z. wiss. Zool. 111, 153–280 (1914).Google Scholar
  11. Kapany, N. S., and J. J. Burke: Fibre optics. IX. Waveguide effects. J. opt. Soc. Amer. 51, 1067–1078 (1961).Google Scholar
  12. Kirschfeld, K.: Das anatomische und das physiologische Sehfeld der Ommatidien im Komplexauge von Musca. Kybernetik 2, 249–257 (1965).Google Scholar
  13. —: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).Google Scholar
  14. —: Absorption properties of single rods, cones and rhabdomeres. Proceedings of the Internat. School of Physics Enrico Fermi: Processing of optical data by organisms and by machines. New York: Academic Press 1969.Google Scholar
  15. —, u. N. Franceschini: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968).Google Scholar
  16. Kuiper, J. W.: The optics of the compound eye. Symp. Soc. exp. Biol. 16, 58–71 (1962).Google Scholar
  17. Langer, H.: Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z. vergl. Physiol. 51, 258–263 (1965).Google Scholar
  18. McCann, G. D., and G. F. MacGintie: Optomotor response studies of insect vision. Proc. roy. Soc. London B 163, 369–401 (1965).Google Scholar
  19. Melamed, J., and O. Trujillo-Cenóz: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res. 21, 313–334 (1968).Google Scholar
  20. Nilsson, S. E.: The ultrastructure of the receptor outer segments in the retina of the leopard frog (Rana pipiens). J. Ultrastruct. Res. 12, 207–231 (1965).Google Scholar
  21. Parker, G. H.: The movements of the retinal pigment. Ergebn. Biol. 9, 239–291 (1932).Google Scholar
  22. Röhlich, P., and L.J. Török: The effect of light and darkness on the fine structure of the retinal clubs of Dendrocoelum lacteum. Quart. J. micr. Sci. 103, 543–548 (1962).Google Scholar
  23. Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala (Meig). Z. vergl. Physiol. 59, 205–231 (1968).Google Scholar
  24. Sidman, R. L.: The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J. biophys. biochem. Cytol. 3, 15–29 (1957).Google Scholar
  25. Stockhammer, K.: Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z. vergl. Physiol. 38, 30–83 (1956).Google Scholar
  26. Thorson, J.: Small-signal analysis of a visual reflex in the locust. I., II. Kybernetik 3, 41–66 (1966).Google Scholar
  27. Trujillo-Cenóz, O., and J. Melamed: Electron microscope observations on the peripheral and intermediate retinas of dipterans. The functional organization of the compound eye. Proceedings of the Internat. Symposium held in Stockholm, October 1965, Wenner-Gren Center, Internat. Symp. Series, Vol. 7. Oxford: Pergamon Press 1966.Google Scholar
  28. —: Compound eye of dipterans: Anatomical basis for integration — an electron microscope study. J. Ultrastruct. Res. 16, 395–398 (1966).Google Scholar
  29. Tuurala, O., u. A. Lehtinen: über die Wandlungen in der Feinstruktur der Lichtsinneszellen bei der Hell- und Dunkeladaptation im Auge einer Asselart Oniscus Asellus L. Ann. Acad. Sci. fenn. A, IV 123, 3–7 (1967b).Google Scholar
  30. —: Zu den photomechanischen Erscheinungen im Auge der Gewächshausheuschrecke Tachycines asynamorus. Adel, Commentationes Biol. Soc. Sci. Fenn. 30, l-4 (1967a).Google Scholar
  31. — u. M. Nyholm: Zu den photomechanischen Erscheinungen im Auge einer Asselart, Oniscus Asellus L. Ann. Acad. Sci. fenn. A, IV 99, 1–8 (1966).Google Scholar
  32. Vries, H. de: Physical aspects of sense organs. Progr. Biophys. 6, 207–264 (1956).Google Scholar
  33. Weizel, W.: Lehrbuch der theoretischen Physik, Bd. 1. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  34. Wolken, J.J., J. Capenos, and A. Turano: Photoreceptor structures. III. Drosophila melanogaster. J. biophys. biochem. Cytol. 3, 441–448 (1957).Google Scholar
  35. Woolbarsht, M. L., H. G. Wagner, and D. Bodenstein: Origin of the electrical response in the eye of Periplaneta Americana. In: The functional organization of the compound eye (ed. C. G. Bernhard). Wenner Gren Center, Internat. Symp. Series, Vol. 7. Oxford: Pergamon Press 1966.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • K. Kirschfeld
    • 1
  • N. Franceschini
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingen

Personalised recommendations