Advertisement

Acta Informatica

, Volume 23, Issue 5, pp 597–605 | Cite as

Synchronizable deterministic pushdown automata and the decidability of their equivalence

  • Karel CulikII
  • Juhani Karhumäki
Article

Summary

The notion of synchronized and synchronizable deterministic pushdown automata (DPDA's) is introduced. It is shown that the equivalence of two synchronized and even of synchronizable DPDA's can be tested. It is conjectured that every two equivalent DPDA's are synchronizable. It is also shown that the equivalence of two deterministic pushdown transducers whose underlying DPDA's are synchronized can be tested.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, J., Culik II, K., Karhumäki, J.: Test sets for context-free languages and algebraic systems of equations. Inf. Control 52, 172–186 (1982)Google Scholar
  2. 2.
    Beeri, C.: An improvement on Valiant's decision procedure for equivalence of deterministic finite turn pushdown machines, Theor. Comput. Sci. 3, 305–320 (1976)Google Scholar
  3. 3.
    Courcelle, B.: An axiomatic approach to the Korenjak-Hopcroft algorithms, in Proc. 8th ICALP, Lect. Notes Comput. Scie. 115, pp. 393–407. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  4. 4.
    Culik II, K., Karhumäki, J.: Systems of equations over a free monoid and Ehrenfeucht's conjecture, Discrete Math. 43, 139–153 (1983)Google Scholar
  5. 5.
    Culik II, K., Salomaa, A.: On the decidability of morphic equivalence for languages. J. Comput. Syst. Sci. 17, 163–175 (1978)Google Scholar
  6. 6.
    Friedman, E.P., Greibach, S.A.: Superdeterministic DPDA's: the method of accepting does affect decision problems. J. Comput. Syst. Sci. 19, 79–117 (1979)Google Scholar
  7. 7.
    Harrison, M.A., Introduction to formal language theor. Reading, Mass.: Addison-Wesley 1978Google Scholar
  8. 8.
    Harrison, M.A., Havel, I.M.: Real-time strict deterministic languages, SIAM J. Comput. 1, 333–349 (1972)Google Scholar
  9. 9.
    Harrison, M.A., Havel, I.M., Yehudai, A.: On equivalence of grammars through transformation trees. Theor. Comput. Sci. 9, 173–205 (1979)Google Scholar
  10. 10.
    Ibarra, O., Rosier, L.: On the decidability of equivalence for deterministic pushdown transducers. Inf. Process. Lett. 13, 89–93 (1981)Google Scholar
  11. 11.
    Katayama, T., Tsuchiya, N., Enomoto, H.: On the decidability of equivalence for deterministic pushdown transducers, Trans. Inst. Elect. Commun. Eng. Japan 58-D, 760–767 (1975)Google Scholar
  12. 12.
    Korenjak, A.J., Hopcroft, J.E., Simple deterministic languages, in Proc. IEEE 7th Annual Symposium on Switching and Automata Theory, 36–46, Berkeley, CA. 1966Google Scholar
  13. 13.
    Linna, M., Two decidability results for deterministic pushdown automata, J. Comput. Syst. Sic. 18, 92–107(1979)Google Scholar
  14. 14.
    Olshansky, T., Pnueli, A.: A direct algorithm for checking equivalence of LL(k) grammars, Theor. Comput. Sci. 4, 321–349 (1977)Google Scholar
  15. 15.
    Oyamaguchi, M., Honda, N.: The decidability of equivalence for deterministic stateless pushdown automata, Inf. Contr. 38, 367–376 (1978)Google Scholar
  16. 16.
    Oyamaguchi, M., Honda, N., Inagaki, Y.: The equivalence problem for realtime strict deterministic languages, Inf. Control 45, 90–115 (1980)Google Scholar
  17. 17.
    Rosenkrantz, D.J., Stearns, R.E., Properties of deterministic top-down grammars, Inf. Control 17, 226–256 (1970)Google Scholar
  18. 18.
    Taniguchi, K., Kasami, T.: A result on the equivalence problem for deterministic pushdown automata, J. Comput. Syst. Sci. 13, 38–50 (1976)Google Scholar
  19. 19.
    Tomita, E.: A direct branching algorithm for checking equivalence of strict deterministics vs. LL(k) grammars. Theor. Comput. Sci. 23 (1983)Google Scholar
  20. 20.
    Tomita, E.: A direct branching algorithm for checking equivalence of some classes of deterministic pushdown automata. Inf. Control 52, 187–238 (1982)Google Scholar
  21. 21.
    Valiant, L.G.: Decision procedures for families of deterministic pushdown automata, Ph.D. Thesis, Department of Computer Science, University of Warwick, Coventry, England 1973Google Scholar
  22. 22.
    Valiant, L.G.: The equivalence problem for deterministic finite-turn pushdown automata, Inf. Control 25, 123–133 (1974)Google Scholar
  23. 23.
    Valiant, L.G.: Paterson, M.S., Deterministic one-counter automata. J. Comput. Syst. Sci. 10, 340–350 (1975)Google Scholar
  24. 24.
    Wood, D.: Some remarks on the KH algorithm for s-grammars. BIT 13, 476–489 (1973)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Karel CulikII
    • 1
  • Juhani Karhumäki
    • 2
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations