, Volume 83, Issue 2, pp 191–197

Single-copy DNA relationships between diploid and tetraploid teleostean fish species

  • J. Schmidtke
  • I. Kandt


The degree of single-copy DNA relatedness among nine Salmonid, Osmerid, and Clupeid species (teleosts, order Isospondyli) was explored by interspecific DNA hybridization and the determination of the thermal stability of these hybrids. It is shown that the extent of base substitution and the amount of shared sequences is largely consistent with the systematic interrelationship of the species compared. A tentative estimate of the average base substitution rate is about 0.1–0.25% per million years, which is in the range typical for animal and plant nuclear genomes. The results are also discussed in view of the phylogenetically tetraploid state of the Salmonid genomes. A comparison of the amount of intra-genomic and inter-genomic divergence in the tetraploids suggests that a polyploidization event occurred recently in Salmonid evolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F.W., Utter, R.M., May, B.P.: Gene duplication within the family Salmonidae. II. Detection and determination of the genetic control of duplicate loci through inheritance studies and the examination of populations. In: Isozyme (C.L. Markert, ed.), Vol. IV, pp. 415–432. New York: Academic Press 1975Google Scholar
  2. Angerer, R.C., Davidson, E.H., Britten, R.J.: Single copy DNA and structural gene sequence relationships among four sea urchin species. Chromosoma (Berl.) 56, 213–226 (1976)Google Scholar
  3. Bonner, T.I., Brenner, B.J., Neufeld, B.R., Britten, R.J.: Reduction in the rate of DNA reassociation by sequence divergence. J. molec. Biol. 81, 123–135 (1973)Google Scholar
  4. Britten, R.J., Graham, D.E., Neufeld, B.R.: Analysis of repeating DNA sequences by reassociation. In: Methods in enzymology (L. Grossman and K. Moldave, eds.), Vol. 29 E, pp. 363–418. New York: Academic Press 1974Google Scholar
  5. Davisson, M.T., Wright, J.E., Atherton, L.M.: Cytogenetic analysis of pseudolinkage of LDH loci in the teleost genus Salvelinus. Genetics 73, 645–658 (1973)Google Scholar
  6. Engel, W., Schmidtke, J., Wolf, U.: Diploid-tetraploid relationships in teleostean fishes. In: Isozymes (C.L. Markert, ed.), Vol. IV, pp. 449–462. New York: Academic Press 1975Google Scholar
  7. Engel, W., Schmidtke, J.: Die Bedeutung von Genduplikationen für die Evolution der Wirbeltiere. In: Humangenetik (P.E. Becker, ed.), Vol. I, 3, pp. 618–654. Stuttgart: Thieme Verlag 1976Google Scholar
  8. Galau, G.A., Chamberlin, M.E., Hough, B.R., Britten, R.J., Davidson, E.H.: Evolution of repetitive and non-repetitive DNA in two species of Xenopus. In: Molecular evolution (F.J. Ayala, ed.), pp. 200–224. Sunderland, Mass.: Sinauer Press 1976Google Scholar
  9. Harpold, M.M., Craig, S.P.: The evolution of non-repetitive DNA in sea urchins. Differentiation 10, 7–11 (1978)Google Scholar
  10. Kohne, D.E.: Evolution of higher-organism DNA. Quart. Rev. Biophys. 33, 327–375 (1970)Google Scholar
  11. Kohne, D.E., Chiscon, J.A., Hoyer, B.H.: Evolution of mammalian DNA. Proc. 6th Berkeley Symp. Math. Stat. Prob. V, 193–209 (1972)Google Scholar
  12. Lim, S.T., Kay, R.M., Bailey, G.S.: Lactate dehydrogenase isozymes of Salmonid Fish. J. biol. Chem. 250, 1790–1800 (1975)Google Scholar
  13. Lim, S.T., Bailey, G.S.: Gene duplication in Salmonid Fishes: Evidence for duplicated but catalytically equivalent A4 lactate dehydrogenases. Biochem. Genet. 15, 707–721 (1977)Google Scholar
  14. Nygren, A., Nilsson, B., Jahnke, M.: Cytological studies in Atlantic Salmon. Ann. Acad. Reg. Sci. Upsalien. 12, 21–52 (1968)Google Scholar
  15. Nygren, A., Nilsson, B., Jahnke, M.: Cytological studies in Salmo trutta and Salmo alpinus. Hereditas (Lund) 67, 259–268 (1971)Google Scholar
  16. Obruchev, D.V.: Fundamentals of Paleontology, Vol. XI, Agnatha, Pisces. Jerusalem: Israel Program for Scientific Translations 1967Google Scholar
  17. Ohno, S., Stenius, C., Faisst, E., Zenzes, M.T.: Post-zygotic chromosomal rearrangements in rainbow trout (Salmo irideus Gibbons). Cytogenetics 4, 117–129 (1965)Google Scholar
  18. Schmidtke, J., Schmitt, E., Matzke, E., Engel, W.: Non-repetitive DNA sequence divergence in phylogenetically diploid and tetraploid teleostean species of the family Cyprinidae and the order Isospondyli. Chromosoma (Berl.) 75, 185–198 (1979)Google Scholar
  19. Schmidtke, J., Zenzes, M.T., Weiler, C., Bross, K., Engel, W.: Gene action in fish of tetraploid origin. IV. Ribosomal DNA amount in clupeoid and salmonoid Fish. Biochem. Genet. 14, 293–297 (1976)Google Scholar
  20. Stein, D.B., Thompson, W.F., Belford, H.S.: Studies on DNA sequences in the Osmundaceae. J. molec. Evol. 13, 215–232 (1979)Google Scholar
  21. Takahata, N., Maruyama, T.: Polymorphism and loss of duplicate gene expression: A theoretical study with application to tetraploid fish. Proc. nat. Acad. Sci. (Wash.) 76, 4521–4525 (1979)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. Schmidtke
    • 1
  • I. Kandt
    • 1
  1. 1.Institut für Humangenetik der UniversitätGöttingenWest Germany

Personalised recommendations