Human Genetics

, Volume 83, Issue 2, pp 159–164

Chromosomal localization of human aspartate aminotransferase genes by in situ hybridization

  • S. Pol
  • B. Bousquet-Lemercier
  • M. Pavé-Preux
  • F. Bulle
  • E. Passage
  • J. Hanoune
  • M. G. Mattei
  • R. Barouki
Original Investigations

Summary

The localization of the human genes for cytosolic and mitochondrial aspartate aminotransferase (AspAT) has been determined by chromosomal in situ hybridization with specific human cDNA probes previously characterized in our laboratory. The cytosolic AspAT gene is localized on chromosome 10 at the interface of bands q241–q251. Mitochondrial AspAT is characterized by a multigene family located on chromosomes 12 (p131–p132), 16 (q21), and 1 (p32–p33 and q25–q31). Genomic DNA from ten blood donors was digested by ten restriction enzymes, and Southern blots were hybridized with the two specific probes. Restriction fragment length polymorphism was revealed in only one case for cytosolic AspAT, with PvuII, while no polymorphism for mitochondrial AspAT was found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken DA, Ferguson-Smith MA (1978) Gene dosage evidence for the regional assignment of the GOTs structural gene locus to 10q24→10q25 Cytogenet Cell Genet 22: 468–471Google Scholar
  2. Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 9: 2303–2308Google Scholar
  3. Braunstein AE (1985) Transamination and transaminases. In: Christen P, Metzler DE (eds) Transaminases. Wiley, New York, pp 2–19Google Scholar
  4. Chern CJ, Mellman WJ, Croce CM (1976) Localization of the structural locus for cytoplasmic glutamic-oxaloacetic transaminase to region q24→qter of human chromosome 10. Cytogenet Cell Genet 16: 108–110Google Scholar
  5. Cooper AJL, Meister A (1985) Metabolic significance of transamination. In: Christen P, Metzler DE (eds) Transaminases. Wiley, New York, pp 534–563Google Scholar
  6. Craig IW, Tolley E, Bobrow M, Heyningen V van (1978) Assignment of a gene necessary for the expression of mitochondrial glutamicoxaloacetic transaminase in human-mouse hybrid cells. Cytogenet Cell Genet 22: 190–194Google Scholar
  7. Davidson RG, Cortner JA, Rattazzi MC, Ruddle FH, Lubs HA (1970) Genetic polymorphism of human mitochondrial glutamic oxaloacetic transaminase. Science 169: 391–392Google Scholar
  8. Duncan IW, Scott EM, Wright RC (1974) Gene frequencies of erythrocytic enzymes of Alaskan Eskimos and Athabaskan Indians. Am J Hum Genet 26: 244–246Google Scholar
  9. Hackel E, Hopkinson DA, Harris H (1972) Population studies on mitochondrial glutamate-oxaloacetate transaminase. Ann Hum Genet 35: 491–496Google Scholar
  10. Jeremiah SJ, Povey S, Burley NW, Kietly C, Lee M, Spowart G, Corney G, Cook PJL (1982) Mapping studies on human mitochondrial glutamate oxaloacetate transaminase. Ann Hum Genet 35: 145–152Google Scholar
  11. Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  12. Mattei MG, Philip N, Passage E, Moisan JP, Mandel JL, Mattei JF (1985) DNA probe localization at 18p113 band by in situ hybridization and identification of a small supernumerary chromosome. Hum Genet 69: 268–271Google Scholar
  13. Mitchell G, Valle D, Willard H, Steel G, Suchaneck M, Brody L (1986) Human ornithine-delta-aminotransferase (OAT): cross-hybridizing fragments mapped to chromosome 10 and Xp11.1-21.1 (abstract). Am J Hum Genet 36: A163Google Scholar
  14. Mouse News Letter (1987) Mouse chromosome atlas, map of mouse, man homologies. Mouse News Lett 78: 12–26Google Scholar
  15. Nalpas B, Vassault A, Charpin S, Lacour B, Berthelot P (1986) Serum mitochondrial aspartate aminotransferase as a marker of chronic alcoholism: diagnostic value and interpretation in a liver unit. Hepatology 6: 608–614Google Scholar
  16. Obaru K, Tsuzuki T, Setoyama C, Shimada K (1988) Structural organization of the mouse aspartate aminotransferase isoenzyme genes. Introns antedate the divergence of cytosolic and mitochondrial isoenzyme genes. J Mol Biol 200: 13–22Google Scholar
  17. Okuno F, Ishii H, Kashiwazaki K, Takagi S, Shigeta Y, Arai M, Takagi T, Ebihara Y, Tsuchiya M (1988) Increase in mitochondrial GOT (m-GOT) activity after chronic alcohol consumption clinical and experimental observations. Alcohol 5: 49–53Google Scholar
  18. Pavé-Preux M, Ferry N, Bouguet J, Hanoune J, Barouki R (1988) Nucleotide sequence and glucocorticoid regulation of the mRNAs for the isoenzymes of rat aspartate aminotransferase. J Biol Chem 263: 17459–17466Google Scholar
  19. Pol S, Bousquet-Lemercier B, Pavé-Preux M, Pawlak A, Berthelot P, Hanoune J, Barouki R (1988) Nucleotide sequence and tissue distribution of mitochondrial aspartate aminotransferase mRNA. Biochem Biophys Res Commun 157: 1309–1315Google Scholar
  20. Ramesh V, Eddy R, Shows TB, Shih VE, Gusella JF (1986) Chromosomal assignment of human ornithine aminotransferase (abstract). Am J Hum Genet 39: A166Google Scholar
  21. Ritter H, Kömpf J (1979) Human mitochondrial glutamic-oxaloacetic-transaminase, GOTM: formal genetics. Hum Genet 51: 327–329Google Scholar
  22. Roderick TH, Davisson MT (1984) In: O'Brien SJ (ed) Genetic maps, vol 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 343–356Google Scholar
  23. Sonderegger P, Jaussi R, Christen P, Gehring H (1982) Biosynthesis of aspartate aminotransferases. Both the higher molecular weight precursor of mitochondrial aspartate aminotransferase and the cytosolic isoenzyme are synthesized on free polysomes. J Biol Chem 257: 3339–3345Google Scholar
  24. Southern EJ (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517Google Scholar
  25. Spritz RA, Emanuel BS, Chern CJ, Mellman WJ (1979) Gene dosage effect: intraband mapping of human soluble glutamic oxaloacetic transaminase. Cytogenet Cell Genet 23: 149–156Google Scholar
  26. Tolley E, Van Heyningen V, Brown R, Bobrow M, Craig IW (1980) Assignment to chromosome 16 of a gene necessary for the expression of human mitochondrial glutamate oxaloacetate transaminase (aspartate aminotransferase) (E.C.2.6.1.1.). Biochem Genet 18: 947–954Google Scholar
  27. Tsuzuki T, Obaru K, Setoyama C, Shimada K (1987) Structural organization of the mouse mitochondrial aspartate aminotransferase gene. J Mol Biol 198: 21–31Google Scholar
  28. Wahl CR, Stern M, Stark G (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76: 3683–3687Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. Pol
    • 1
  • B. Bousquet-Lemercier
    • 1
  • M. Pavé-Preux
    • 1
  • F. Bulle
    • 1
  • E. Passage
    • 2
  • J. Hanoune
    • 1
  • M. G. Mattei
    • 2
  • R. Barouki
    • 1
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM)Hôpital Henri MondorCréteilFrance
  2. 2.Institut National de la Santé et de la Recherche MédicaleHôpital des Enfants de la TimoneMarseille Cédex 5France

Personalised recommendations