Advertisement

World Journal of Microbiology and Biotechnology

, Volume 11, Issue 5, pp 481–485 | Cite as

Electron microscopic examination of the extracellular polymeric substances in anaerobic granular biofilms

  • F. A. MacLeod
  • S. R. Guiot
  • J. W. Costerton
Research

Abstract

Scanning electron microscopy revealed that collapsed extracellular polymeric substances (EPS) surrounded bacteria present in granular sludge. Treatment of granular sludge with whole-cell antiserum and staining with polycationic ferritin demonstrated that bacteria were enveloped by extensive EPS. Antibody stabilization permitted a visualization of the EPS which more closely resembled its natural hydrated state. The EPS was seen to completely fill the intercellular spaces in the microcolonies. Both pure and mixed microcolonies were observed to be enclosed by EPS. The presence of these large amounts of EPS indicates that this extracellular layer is important in maintaining the structural integrity of granular sludge.

Key words

Anaerobic granule electron microscopy extracellular polymeric substances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcand, Y., Guiot, S.R., Desrochers, M. & Chavarie, C. 1994 Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. Chemical Engineering Journal 56, B23-B35.Google Scholar
  2. Bayer, M.E. & Thurow, H. 1977 Polysaccharide capsule of Escherichia coli: microscope study of its size, structure, and site of synthesis. Journal of Bacteriology 130, 911–936.Google Scholar
  3. Beeftink, H.H. & Van DenHeuvel, C. 1988 Physical properties of bacterial aggregates in a continuous flow reactor with biomass retention. In Granular Anaerobic Sludge; Microbiology and Technology, eds Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C. & Hulshoff Pol, L.W. pp. 162–169, Wageningen: Puduc.Google Scholar
  4. Cheng, K.J., Stewart, C.S., Dinsdale, D. & Costerton, J.W. 1984 Electron microscopy of bacteria involved in the digestion of plant cell walls. Animal Feed Science and Technology 10, 93–120.Google Scholar
  5. Costerton, J.W. 1985 The role of bacterial exopolysaccharides in nature and disease. Developments in Industrial Microbiology 26, 249–261.Google Scholar
  6. Costerton, J.W., Irvin, R.T. & Cheng, K.J. 1981a The bacterial glycocalyx in nature and disease. Annual Review of Microbiology 35, 299–324.Google Scholar
  7. Costerton, J.W., Irvin, R.T. & Cheng, K.J. 1981b The role of bacterial surface structures in pathogenesis. CRC Critical Reviews in Microbiology 8, 303–338.Google Scholar
  8. Danon, D., Godstein, L., Marikovsky, Y. & Skutelsky, E. 1972 Use of cationized ferritin as a label of negative charges on cell surfaces. Journal of Ultrastructure Research 38, 500–510.Google Scholar
  9. DeZeeuw, W.J. 1988 Granular sludge in UASB-reactors. In Granular Anaerobic Sludge; Microbiology and Technology, eds Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C. & Hulsshoff Pol, L.W. pp. 132–145. Wageningen: Puduc.Google Scholar
  10. Dolfing, J., Griffioen, A., VanNeerven, A.R.W. & Zevenhuizen, L.P.T.M. 1985 Chemical and bacteriological composition of granular methanogenic sludge. Canadian Journal of Microbiology 31, 744–750.Google Scholar
  11. Erdos, G.W. 1986 Localization of carbohydrate-containing molecules. In Ultrastructural Techniques for Microorganisms, eds Aldrich, H.C. & Todd, W.J. pp. 399–420. New York: Plenum.Google Scholar
  12. Guiot, S.R., Gorur, S.S. & Kennedy, K.J. 1988 Nutritional and environmental factors contributing to microbial aggregation during upflow anaerobic sludge bed-filter (UBF) reactor startup. In Proceedings of the 5th International Symp. on Anaerobic Digestion, Bologna, Italy, eds Hall, E.R. & Hobson, P.N. pp. 47–53. Oxford: Pergamon Press.Google Scholar
  13. Huser, B.A., Wuhrmann, K. & Zehnder, A.J.B. 1982 Methanothrix soehngenii gen. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Archives of Microbiology 132, 1–9.Google Scholar
  14. Lettinga, G., VanVelsen, A.F.M., Hobma, S.W., DeZeeuw, W.J. & Klapwijk, A. 1980 Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering 22, 699–734.Google Scholar
  15. Luft, J.H. 1971 Ruthenium red and ruthenium violet. I. Chemistry, purification, methods of use for electron microscopy, and mechanisms of action. Anatomical Record 171, 347–368.Google Scholar
  16. Mackie, E.B., Brown, K.N., Lam, J. & Costerton, J.W. 1979 Morphological stabilization of capsules of group B streptococci, types Ia, Ib, II and III, with specific antibody. Journal of Bacteriology 138, 609–612.Google Scholar
  17. MacLeod, F.A., Guiot, S.R. & Costerton, J.W. 1990 Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology 56, 1598–1607.Google Scholar
  18. McInerney, M.J., Bryant, M.P., Hespell, R.B. & Costerton, J.W. 1981 Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Applied and Environmental Microbiology 41, 1029–1039.Google Scholar
  19. Patel, G.B. 1984 Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Canadian Journal of Microbiology 30, 1383–1396.Google Scholar
  20. Poindexter, J.S. 1964 Biological properties and classification of the Caulobacter group. Bacteriological Reviews 28, 231–295.Google Scholar
  21. Reynolds, E.S. 1963 The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 17, 208–242.Google Scholar
  22. Sjoblad, R.D. & Doltsch, R.N. 1982 Adsorption of polarly flagellated bacteria to surfaces. Current Microbiology 7, 191–194.Google Scholar
  23. Sutherland, I.W. 1972 Bacterial exopolysaccharides. Advances in Microbial Physiology 8, 143–213.Google Scholar
  24. Svanborg-Eden, C., Eriksson, B. & Hansen, L.A. 1977 Adhesion of Escherichia coli to human uroepithelial cells ‘in vitro’. Infection and Immunity 18, 767–774.Google Scholar
  25. Weiss, R., Schiefer, H.G. & Krauss, H. 1979 Ultrastructural visualization of Klebsiella capsules by polycationic ferritin. FEMS Microbiology Letters 6, 435–437.Google Scholar

Copyright information

© Rapid Science Publishers 1995

Authors and Affiliations

  • F. A. MacLeod
    • 1
  • S. R. Guiot
    • 2
  • J. W. Costerton
    • 3
  1. 1.Centre for Mineral and Energy TechnologyNatural Resources CanadaOttawaCanada
  2. 2.Biotechnology Research InstituteNational Research CouncilMontréalCanada
  3. 3.Centre for Biofilm EngineeringMontana State UniversityBozemanUSA

Personalised recommendations