Molecular and General Genetics MGG

, Volume 235, Issue 1, pp 22–32 | Cite as

Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132

  • J. Bockmann
  • H. Heuel
  • J. W. Lengeler
Article

Summary

A wild-type isolate, EC3132, of Escherichia coli, that is able to grow on sucrose was isolated and its csc genes (mnemonic for chromosomally coded sucrose genes) transferred to strains of E. coli K12. EC3132 and all sucrose-positive exconjugants and transductants invariably showed a D-serine deaminase (Dsd)-negative phenotype. The csc locus maps adjacent to dsdA, the structural gene for the D-serine deaminase, and contains an inducible regulon, controlled by a sucrose-specific repressor CscR, together with structural genes for a sucrose hydrolase (invertase) CscA, for a d-fructokinase CscK, and for a transport system CscB. Based on DNA sequencing studies, this last codes for a hydrophobic protein of 415 amino acids. CscB is closely related to the β-galactoside transport system LacY (31.2% identical residues) and a raffinose transport system RafB (32,3% identical residues) of the enteric bacteria, both of the proton symport type. A two-dimensional model common to the three transport proteins, which is based on the integrated consensus sequence, will be discussed.

Key words

Sucrose Non-PTS pathway H+-symport Chromosomal genes E. coli 

References

  1. Alaeddinoglu NG, Charles HP (1979) Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for d-serine utilization. J Gen Microbiol 110:47–59Google Scholar
  2. Aslanidis C, Schmid K, Schmitt R (1989) Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol 171:6753–6763Google Scholar
  3. Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW (1991) Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922Google Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Stuhl K (eds) (1989) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New YorkGoogle Scholar
  5. Bachmann BJ (1990) Linkage map of Escherichia coli K-12. Microbiol Rev 54:130–197Google Scholar
  6. Blatch GL, Scholle RR, Woods DR (1990) Nucleotide sequence and analysis of the Vibrio alginolyticus sucrose uptake-encoding region. Gene 95:17–23Google Scholar
  7. Bolshakova TN, Gabrielyan TR, Bourd GI, Gershanovitch VN (1978) Involvement of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system in regulation of transcription of catabolic genes. Eur J Biochem 89:483–490Google Scholar
  8. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mot Biol 41:459–472Google Scholar
  9. Cornelis G, Ghosal D, Saedler H (1978) Tn951: A new transposon carrying a lactose operon. Mot Gen Genet 160:215–224Google Scholar
  10. Débarbouillé M, Martin-Verstraete I, Arnaud M, Klier A, Rapoport G (1991) Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis. Res Microbiol 142:757–764Google Scholar
  11. Edwards PR, Ewing WH (1972) Identification of Enterobacteriaceae, 3rd edn. Burgess, MinneapolisGoogle Scholar
  12. Gershanovitch VN, Ilyina TS, Rusina OY, Yourovitskaya NV, Bolshakova TN (1977) Repression of inducible enzyme synthesis in a mutant of Escherichia coli K-12 deleted for the ptsH gene. Mol Gen Genet 153:185–190Google Scholar
  13. Gunasekaran P, Karunakaran T, Cami B, Mukundan AG, Preziosi L, Baratti J (1990) Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonas mobilis. J Bacteriol 172:6727–6735Google Scholar
  14. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425Google Scholar
  15. Kaback HR (1990) Active transport: membrane vesicles, bioenergetics, molecules, and mechanisms. In: Krulwich TA (ed) Bacterial energetics. Academic Press, San Diego pp 151–202Google Scholar
  16. Kakimura Y, Unemoto T (1985) Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus. J Bacteriol 163:1293–1295Google Scholar
  17. King SC, Hansen CL, Wilson TH (1991) The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta 1062:177–186Google Scholar
  18. Klier AF, Rapoport G (1988) Genetics and regulation of carbohydrate catabolism in Bacillus. Annu Rev Microbiol 42:65–95Google Scholar
  19. Krawiec S, Riley M (1990) Organization of the bacterial chromosome. Microbiol Rev 54:502–539Google Scholar
  20. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132Google Scholar
  21. Lengeler J (1975a) Mutations affecting transport of the hexitols d-mannitol, d-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J. Bacteriol 124:26–38Google Scholar
  22. Lengeler J (1975b) Nature and properties of hexitol transport systems in Escherichia coli. J Bacteriol 124:39–47Google Scholar
  23. Lengeler J (1979) Streptozotocin, an antibiotic superior to penicillin in the selection of rare bacterial mutations. FEMS Microbiol Lett 5:417–419Google Scholar
  24. Lengeler JW (1980) Characterization of mutants of Escherichia coli K-12, selected by resistance to streptozotocin. Mol Gen Genet 179:49–54Google Scholar
  25. Lengeler J, Lin ECC (1972) Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J Bacteriol 112:840–848Google Scholar
  26. Lengeler J, Bockmann J, Heuel H, Titgemeyer F (1992) The enzymes II of the PTS as carbohydrate transport systems: what the evolutionary studies tell us of their structure and function. In Quagliariello E, Plamieri F. (eds) Molecular mechanisms of transport. Elsevier Scince Publishers, Amsterdam pp 77–85Google Scholar
  27. Link CD, Reiner AM (1983) Genotypic exclusion: a novel relationship between ribitol-arabitol and galactitol genes of E. coli. Mol Gen Genet 189:337–339Google Scholar
  28. Low B (1973) Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12. J Bacteriol 113:798–812Google Scholar
  29. Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning — A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  30. Médigue C, Viari A, Hénant A, Danchin A (1991) Escherichia coli molecular genetic map (1500 bp): update II. Mol Microbiol 5:2629–2640Google Scholar
  31. McFall E (1967)Mapping of the d-serine deaminase region in Escherichia coli K-12. Genetics 55:91–99Google Scholar
  32. McMorrow I, Chin DT, Fiebig K, Pierce JL, Wilson DM, Reeve ECR, Wilson TH (1988) The lactose carrier of Klebsiella pneumoniae M5a1: the physiology of transport and the nucleotide sequence of the lacY gene. Biochim Biophys Acta 945:315–323Google Scholar
  33. Postma PW, Lengeler JW (1985) Phosphoenolpyruvate carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269Google Scholar
  34. Reizer J, Saier MH Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W (1988) The phosphoenolpyruvate sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism, and regulation. CRC Crit Rev Biochem 15:297–338Google Scholar
  35. Rosner JL (1972) Formation, induction and curing of bacteriophage P1 lysogenes. Virology 49:679–689Google Scholar
  36. Sato Y, Poy F, Jacobson GR, Kuramitsu HK (1989) Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J Bacteriol 171:263–271Google Scholar
  37. Schmid K, Schupfner M, Schmitt R (1982)Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol 151:68–76Google Scholar
  38. Schmid K, Ebner R, Altenbuchner J, Schmitt R, Lengeler JW (1988) Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol 2:1–8Google Scholar
  39. Schmid K, Ebner R, Jahreis K, Lengeler JW, Titgemeyer F (1991) A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol Microbiol 5:941–950Google Scholar
  40. Scholle RA, Coyne VE, Maharaj R, Robb FT, Woods DR (1987) Expression and regulation of a Vibrio alginolyticus sucrose utilization system cloned in Escherichia coli. J Bacteriol 169:2685–2690Google Scholar
  41. Slee AM, Tanzer JM (1982) Sucrose transport by Streptococcus mutans, evidence for multiple transport systems. Biochim Biophys Acta 692:415–424Google Scholar
  42. Sprenger GA, Lengeler JW (1987) Mapping of the sor genes for l-sorbose degradation in the chromosome of Klebsiella pneumoniae. Mol Gen Genet 209:352–359Google Scholar
  43. Sprenger GA, Lengeler JW (1988) Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J Gen Microbiol 134:1635–1644Google Scholar
  44. van Gijsegem F, Toussaint A (1982)Chromosome transfer and R-prime formation by RP4::mini Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid 7:30–44Google Scholar
  45. van Iwaarden PR, Pastore JC, Konings WN, Kaback HR (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30:9595–9600Google Scholar
  46. von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–458Google Scholar
  47. Wilson TH, Yunker PL, Hansen CL (1990) Lactose transport mutants of Escherichia coli resistant to inhibition by the phosphotransferase system. Biochim Biophys Acta 1029:113–116Google Scholar
  48. Wirth R, Fiesenegger A, Fiedler S (1989) Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216:175–177Google Scholar
  49. Woodward MJ, Charles, HP (1982) Genes for l-sorbose utilization in Escherichia coli. J Gen Microbiol 128:1969–1980Google Scholar
  50. Woodward MJ, Charles HP (1983) Polymorphism in Escherichia coli: rtl, atl and gat regions behave as chromosomal alternatives. J Gen Microbiol 129:75–84Google Scholar
  51. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. Bockmann
    • 1
  • H. Heuel
    • 1
  • J. W. Lengeler
    • 1
  1. 1.Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations