Chromosoma

, Volume 77, Issue 3, pp 229–251

Cytochemical studies of metaphase chromosomes by flow cytometry

  • R. G. Langlois
  • A. V. Carrano
  • J. W. Gray
  • M. A. Van Dilla
Article

Abstract

The cytochemical properties of metaphase chromosomes from Chinese hamster and human cells were studied by flow cytometry. This technique allows precise quantitation of the fluorescence properties of individual stained chromosome types. Chromosomes were stained with the following fluorescent DNA stains: Hoechst 33258, DAPI, chromomycin A3, ethidium bromide, and propidium iodide. The relative fluorescence of individual chromosome types varied depending on the stain used, demonstrating that individual chromosome types differ in chemical properties. Flow measurements were performed as a function of stain and chromosome concentration to characterize the number and distribution of stain binding sites. Flow analysis of double stained chromosomes show that bound stains interact by energy transfer with little or no binding competition. For most hamster chromosomes, there is a strong correlation between relative fluorescence and stain base preference suggesting that staining differences may be determined primarily by differences in average base composition. A few hamster chromosome types exhibit anomalous staining which suggests that some other property, such as repetitive DNA sequences, also may be an important determinant of chromosomal staining.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrighi, F.E., Saunders, G.F.: The relationship between repetitious DNA and constitutive heterochromatin with special reference to man. In: Modern Aspects of Cytogenetics: Constitutive Heterochromatin in Man (R.A. Pfeiffer, ed.), p. 113–133. Stuttgart-New York: Schattauer 1973Google Scholar
  2. Arrighi, F.E., Hsu, T.C., Pathak, S., Sawada, H.: The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences. Cytogenet. Cell Genet. 13, 268–274 (1974)Google Scholar
  3. Atkin, N.B., Mattinson, G., Becak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma (Berl.) 17, 1–10 (1965)Google Scholar
  4. Behr, W., Honikel, K., Hartman, G.: Interaction of the RNA polymerase inhibitor chromomycin with DNA. Europ. J. Biochem. 9, 82–92 (1969)Google Scholar
  5. Brodie, S., Giron, J., Latt, S.A.: Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer. Nature (Lond.) 253, 470–471 (1975)Google Scholar
  6. Brody, T.: Histones in cytological preparations. Exp. Cell Res. 85, 255–263 (1974)Google Scholar
  7. Carrano, A.V., Gray, J.W., Langlois, R.G., Burkhart-Schultz, K.J., Van Dilla, M.A.: Measurement and pruification of human chromosomes by flow cytometry and sorting. Proc. nat. Acad. Sci. (Wash.) 76, 1382–1384 (1979)Google Scholar
  8. Carrano, A.V., Gray, J.W., Moore II, D.H., Minkler, J.L., Mayall, B.H., Van Dilla, M.A., Mendelsohn, M.L.: Purification of the chromosomes of the Indian Muntjac by flow sorting. J. Histochem. Cytochem. 24, 348–354 (1976)Google Scholar
  9. Comings, D.E., Drets, M.E.: Mechanisms of chromosome banding IX. Are variations in base composition adequate to account for Quinacrine, Hoechst 33258 and Daunomycin banding? Chromosoma (Berl.) 56, 199–211 (1976)Google Scholar
  10. Dean, P.N., Pinkel, D.: High resolution dual laser flow cytometry. J. Histochem. Cytochem. 26, 622–627 (1978)Google Scholar
  11. Feller, W.: An Introduction to Probability Theory and its Applications. Vol 1, p. 279–300. New York: John Wiley, 1957Google Scholar
  12. Gosden, J.R., Mitchell, A.R., Buckland, R.A., Clayton, R.P., Evans, H.J.: The location of four human satellite DNA's on human chromosomes. Exp. Cell Res. 92, 148–158 (1975)Google Scholar
  13. Gray, J.W., Carrano, A.V., Steinmetz, L.L., Van Dilla, M.A., Moore II, D.H., Mayall, B.H., Mendelsohn, M.L.: Chromosome measurement and sorting by flow systems. Proc. nat. Acad. Sci. (Wash.) 72, 1231–1234 (1975)Google Scholar
  14. Gray, J.W., Langlois, R.G., Carrano, A.V., Dilla, M.A. Van: High resolution chromosome analysis: one and two parameter flow cytometry. Chromosoma (Berl.) 73, 9–27 (1979)Google Scholar
  15. Hanania, N., Caneva, R., Tapiero, H., Havel, J.: Distribution of repetitious DNA in randomly growing and synchronized Chinese hamster cells. Exp. Cell Res. 90, 79–86 (1975)Google Scholar
  16. Horan, P.K., Wheeless, L.L.: Quantitative single cell analysis and sorting. Science 198, 149–157 (1977)Google Scholar
  17. Jensen, R.H., Langlois, R.G., Mayall, B.H.: Strategies for choosing a Deoxyribonucleic acid stain for flow cytometry of metaphase chromosomes. J. Histochem. Cytochem. 25, 954–964 (1977)Google Scholar
  18. Jorgenson, K.F., Sande, J.H., Van de Lin,C.C.: The use of base pair specific DNA binding agents as affinity labels for the study of mammalian chromosomes. Chromosoma (Berl.) 68, 287–302 (1978)Google Scholar
  19. Korenberg, J.R., Engels, W.R.: Base ratio, DNA content, and quinacrine-brightness of human chromosomes. Proc. nat. Acad. Sci. (Wash.) 75, 3382–3386 (1978)Google Scholar
  20. Langlois, R.G., Jensen, R.H.: Interactions between pairs of DNA specific fluorescent stains bound to mammalian cells. J. Histochem. Cytochem. 27, 72–79 (1979)Google Scholar
  21. Latt, S.A.: Fluorometric detection of deoxyribonucleic acid syntehsis; possibilities for interfacing bromodeoxyuridine dye techniques with flow fluorometry. J. Histochem. Cytochem. 25, 913–926 (1977)Google Scholar
  22. Latt, S.A., Brodie, S., Munroe, S.H.: Optical studies of complexes of Quinacrine with DNA and chromatin: Implications for the fluorescence of cytological chromosome preparations. Chromosoma (Berl.) 49, 17–40 (1974)Google Scholar
  23. Latt, S.A., Wohlleb, J.C.: Optical studies of the interaction of 33258 Hoechst with DNA, chromatin and metaphase chromosomes. Chromosoma (Berl.) 52, 297–316 (1975)Google Scholar
  24. Lawrence, J.J., Duane, M.: Ethidium bromide as a probe of conformational heterogeneity of DNA in chromatin. The role of histone H1. Biochemistry 15, 3301–3307 (1976)Google Scholar
  25. Leemann, U., Ruch, F.: Selective excitation of Mithramycin or DAPI fluorescence on double-stained cell nuclei and chromosomes. Histochemistry 58, 329–334 (1978)Google Scholar
  26. LePecq, J.B.: Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurement of their associated enzymes. Methods of Biochemical Analysis, (D. Glick, ed.), Vol. 20, p. 41–86. New York: Interscience 1971Google Scholar
  27. Le Pecq, J.B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. molec Biol. 27, 87–106 (1967)Google Scholar
  28. Lin, M.S., Comings, D.E., Alfi, O.S.: Optical studies of the interaction of 4′-6-Diamidino-2-Phenylindole with DNA and metaphase chromosomes. Chromosoma (Berl.) 60, 15–25 (1977)Google Scholar
  29. Manuelidis, L.: Chromosomal localization of complex and simple repeated human DNAs. Chromosoma (Berl.) 66, 23–32 (1978)Google Scholar
  30. McGhee, J.D., Hippel, O.H.von: Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homgeneous lattice. J. molec. Biol. 86, 469–489 (1974)Google Scholar
  31. Miller, O.J., Miller, D.A., Warburton, D.P.: Application of new staining techniques to the study of human chromosomes. Progr. med. Genet. 9, 1–46 (1973)Google Scholar
  32. Muller, W., Gautier, F.: Interactions of heteroaromatic compounds with nucleic acids: AT-specific non-intercalating DNA ligands. Europ. J. Biochem. 54, 385–394 (1975)Google Scholar
  33. Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequence. Exp. Cell Res. 72, 602–608 (1972)Google Scholar
  34. Rigler, R.: Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by Acridine Orange. Acta. Physiol. Scand. 67, Suppl. 267 (1966)Google Scholar
  35. Sahar, E., Latt, S.A.: Enhancement of banding patterns in human metaphase chromosomes by energy transfer. Proc. nat. Acad. Sci. (Wash.) 75, 5650–5654. (1978)Google Scholar
  36. Scatchard, G.: The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672 (1949)Google Scholar
  37. Schnedl, W.: Structure and variability of human chromosomes analyzed by recent techniques. Hum. Genet. 41, 1–9 (1978)Google Scholar
  38. Schweizer, D.: Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma (Berl.) 58, 307–324 (1976)Google Scholar
  39. Stubblefield, E.: Analysis of the replication pattern of Chinese hamster chromosomes using 5-Bromodeoxyuridine suppression of 33258 Hoechst fluorescence. Chromosoma (Berl.) 53, 209–211 (1975)Google Scholar
  40. Stubblefield, E., Wray, W.: Isolation of specific human metaphase chromosomes. Biochem. biophys. Res. Commn. 83, 1404–1414 (1978)Google Scholar
  41. Sumner, A.T., Evans, H.J., Buckland, R.A.: Mechanisms involved in the banding of chromosomes with Quinacrine and Giemsa: The effects of fixation in methanol-acetic acid. Exp. Cell Res. 81, 214–222 (1973)Google Scholar
  42. Van Dilla, M., Steinmetz, L., Davis, D., Gray, J.W.: High speed cell analysis and sorting with flow systems: biological applications and new approaches. IEEE Trans. Nucl. Sci. NS-21, 714–720 (1974)Google Scholar
  43. Waring, M.: Variation of the Supercoils in closed circular DNA by binding of antibiotics and drugs: Evidence for molecular models involving intercalaction. J. molec. Biol. 54, 247–279 (1970)Google Scholar
  44. Yunis, J.J., Yasmineh, W.G.: Heterochromatin, satellite DNA, and cell function. Science 174, 1200–1209 (1971)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. G. Langlois
    • 1
  • A. V. Carrano
    • 1
  • J. W. Gray
    • 1
  • M. A. Van Dilla
    • 1
  1. 1.Biomedical Sciences Division, Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations