Advertisement

Marine Geophysical Researches

, Volume 11, Issue 2, pp 101–112 | Cite as

Geology of Macdonald Seamount region, Austral Islands: Recent hotspot volcanism in the south Pacific

  • P. Stoffers
  • R. Botz
  • J. -L. Cheminée
  • C. W. Devey
  • V. Froger
  • G. P. Glasby
  • M. Hartmann
  • R. Hékinian
  • F. Kögler
  • D. Laschek
  • P. Larqué
  • W. Michaelis
  • R. K. Mühe
  • D. Puteanus
  • H. H. Richnow
Article

Abstract

The southeastern extension of the Austral Islands volcanic chain terminates near 29°S, 140°W at the active Macdonald Seamount. The ‘hotspot’ region near Macdonald consists of at least five other volcanic edifices each more than 500 m high, included in an area about 50–100 km in diameter. On the basis of the sea-floor topography, the southeastern limit of the hotspot area is located about 20 km east of the base of Macdonald, where it is defined by the 3950 m isobath. At the edge of the hotspot area, there is a marked deepening of the seafloor from c.3900 m down to 4000–4300 m. The deeper sea-floor is faulted and heavily sedimented. The Macdonald volcano itself stands 3760 m above the surrounding seafloor, and has a basal diameter of 45 km. Its summit in January 1987 was 39 m below sea level, and it seems likely that Macdonald will emerge at the surface in the near future.

Recent (March and November 1986) phreatic explosions on Macdonald Seamount erupted fragments of ultramafic and mafic plutonic blocks together with basic lapilli (volcaniclastic sand). The plutonic blocks have been variably altered and metamorphosed, and in some cases show signs of mineralisation (disseminated sulphides). The blocks presumably come from deeper levels in the volcanic system. The volcanics so far dredged from Macdonald consist of olivine and clinopyroxene cumulus-enriched basalts, evolved basalts, and mugearite. On the basis of incompatible element variations, simple crystal fractionation seems to be controlling the chemical evolution of Macdonald magmas.

Key words

volcanology hotspot Pacific Macdonald petrology Austral Islands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BarsczusH. G. and LiotardJ. M., 1985, Géochimie des laves du volcan sous-marin Macdonald, Polynésie Francais (Océan Pacific Sud), C. R. Acad. Sci. Paris 300, 915–918.Google Scholar
  2. BrousseR. and Richter de ForgesB., 1980, Laves alcalines et differenciées du volcan sous-marin Macdonald, C. R. Acad. Sci. Paris Ser. D290, 1055–1057.Google Scholar
  3. BurkeK. and WilsonB., 1976, Hotspots on the Earth's Surface, Scient. Am. 235, 46–57.Google Scholar
  4. CheminéeJ. L., HékinianR., TalandierJ., AlbarèdeF., DeveyC. W., FranchteauJ., and LancelotY., 1989, Geology of an Active Hot-Spot: Teahitia-Mehetia Region of the South Central Pacific, Marine Geophys. Res. 11, 27–50.Google Scholar
  5. CroughS. T. and JurdyD. M., 1980, Subducted Lithosphere, Hotspots and the Geoid, Earth Planet. Sci. Lett. 48, 15–22.Google Scholar
  6. DuncanR. A. and McDougallI., 1976, Linear Volcanism in French Polynesia, J. Volcanol. Geotherm. Res. 1, 197–227.Google Scholar
  7. FisherR. V. and SchminckeH.-U., 1984, Pyroclastic Rocks, Springer Verlag, Berlin, 472 pp.Google Scholar
  8. FreyF. A. and ClagueD. A., 1983, Geochemistry of Diverse Basalt Types from Loihi Seamount, Hawaii, Petrogenetic Implications, Earth Planet. Sci. Lett. 66, 337–355.Google Scholar
  9. HerronE. M., 1972, Seafloor Spreading and the Cenozoic History of the East-Central Pacific, Geol. Soc. Am. Bull. 83, 1671–1692.Google Scholar
  10. JohnsonR. H., 1970, Active Submarine Volcanism in the Austral Islands, Science 167, 977–979.Google Scholar
  11. JohnsonR. H., 1980, Seamounts in the Austral Islands Region, National Geographic Soc. Rep. 12, 389–405.Google Scholar
  12. JohnsonR. H., 1984, Exploration of the Submarine Volcanoes in the South Pacific, National Geographic Soc. Rep. 16, 405–419.Google Scholar
  13. JohnsonR. H., and MalahoffA., 1971, Relation of Macdonald Volcano to Migration of Volcanism along the Austral Chain, J. Geophys. Res. 76, 3282–3290.Google Scholar
  14. Klein, F. W. and Koyanagi, R. Y., 1979, Seismicity of Kilauea and Loihi volcanoes, Hawaii, Hawaii Symposium on Intraplate Volcanism and Submarine Volcanism, Abstracts, p. 127.Google Scholar
  15. KokelaarP., 1986, Magma-Water Interactions in Subaqueous and Emergent Basaltic Volcanism, Bull. Volcanol. 48, 275–289.Google Scholar
  16. LanphereM., 1983, 87Sr/86Sr Ratios for Basalts from Loihi Seamount, Hawaii, Earth Planet. Sci. Lett. 66, 380–387.Google Scholar
  17. Malahoff, A., 1986, Geology of the Summit of Loihi Submarine Volcano, U.S. Geol. Surv. Prof. Pap. 1350, Chap. 6.Google Scholar
  18. MalahoffA., McMurtryG. M., WiltshireJ. C., and YehH.-W., 1982, Geology and Chemistry of Hydrothermal Deposits from Active Submarine Volcano Loihi, Hawaii, Nature 298, 234–239.Google Scholar
  19. McBirneyA. R. and AokiK-I., 1968, Petrology of the Island of Tahiti, Geol. Soc. Am. Mem. 116, 523–556.Google Scholar
  20. MooreJ. G., ClagueD. A., and NormarkW. R., 1982, Diverse Basalt Types from Loihi Seamount, Hawaii, Geology 10, 88–92.Google Scholar
  21. MorganW. J. 1971, ‘Convection Plumes in the Lower Mantle’, Nature 230, 42–43.Google Scholar
  22. MorganW. J., 1972, Plate Motions and Deep Mantle Convection, Geol. Soc. Am. Mem. 132, 7–22.Google Scholar
  23. NorrisA. and JohnsonR. H., 1969, Submarine Volcanic Eruptions Recently Located in the Pacific by Sofar Hydrophones, J. Geophys. Res. 74, 650–664.Google Scholar
  24. PalaczZ. A. and SaundersA. D., 1986, Coupled Trace Element and Isotope Enrichment in the Cook-Austral-Samoa Islands, Southwest Pacific, Earth Planet. Sci. Lett. 79, 270–280.Google Scholar
  25. RoedderP. L. and EmslieR. F., 1970, Olivine-Liquid Equilibrium, Contrib. Mineral. Petrol. 29, 275–289.Google Scholar
  26. SailorR. V. and OkalE. A., 1983, Applications of Seasat Altimeter Data in Seismotectonic Studies of the South-Central Pacific, J. Geophys. Res. 88, 1572–1580.Google Scholar
  27. StefanikM. and JurdyD. M., 1984, The Distribution of Hotspots, J. Geophys. Res. 89, 9919–9925.Google Scholar
  28. TalandierJ. and OkalE. A., 1983, The Volcanoseismic Swarms of 1981–1983 in the Tahiti-Mehetia Area, J. Geophys. Res. 89, 11216–11234.Google Scholar
  29. TalandierJ. and OkalE. A., 1984, New Survey of Macdonald Seamount, South Central Pacific, following Volcanoseismic Activity, 1977–1983, Geophys. Res. Lett. 1, 813–816.Google Scholar
  30. TracyR. J., 1980, Petrology and Genetic Significance of an Ultramafic Xenolith Suite from Tahiti, Earth Planet. Sci. Lett. 48, 80–96.Google Scholar
  31. VidalP., ChauvelC., and BrousseR., 1984, Large Mantle Heterogeneity beneath French Polynesia, Nature 307, 536–538.Google Scholar
  32. VogtP. R. and SmootN. C., 1984, The Geisha Guyots, Multibeam Bathymetry and Morphometric Interpretation, J. Geophys. Res. 89, 11085–11107.Google Scholar
  33. WilsonJ. T., 1965, A New Class of Faults and their Bearing on Continental Drift, Nature 207, 343–347.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • P. Stoffers
    • 1
  • R. Botz
    • 1
  • J. -L. Cheminée
    • 2
  • C. W. Devey
    • 3
  • V. Froger
  • G. P. Glasby
    • 4
  • M. Hartmann
    • 1
  • R. Hékinian
    • 5
  • F. Kögler
    • 1
  • D. Laschek
    • 6
  • P. Larqué
    • 7
  • W. Michaelis
    • 8
  • R. K. Mühe
    • 1
  • D. Puteanus
    • 1
  • H. H. Richnow
    • 8
  1. 1.Geologisch-Paläontologisches Institut der Universität KielKielF.R. Germany
  2. 2.Institut de Physique du Globe de Paris (IPG)ParisFrance
  3. 3.Centre de Recherches Pétrographiques et Géochimiques (CRPG)VandoeuvreFrance
  4. 4.D.S.I.R.New Zealand Oceanographic InstituteWellingtonNew Zealand
  5. 5.Institut Francais de Recherche pour l'Exploitation de la Mer (IFREMER)BrestFrance
  6. 6.Mineralogisches InstitutKarlsruheF.R. Germany
  7. 7.Université Louis PasteurStrasbourgFrance
  8. 8.Geologisch-Paläontologisches InstitutHamburgF.R. Germany

Personalised recommendations