Polymer Bulletin

, Volume 17, Issue 3, pp 231–237 | Cite as

Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods

  • R. Teeäär
  • R. Serimaa
  • T. Paakkarl


The crystallinity of six cellulose samples with different origin and treatment was determined using x-ray diffraction (XDR) and nuclear magnetic resonance with cross polarization and magic angle sample spinning (CP/MAS NMR) methods. The numerical results for crystallinity obtained by using curve fitting methods in both cases correlated very well. It was concluded that the values for the crystallinity can be determined from NMR spectra when CP times not exceeding 0.5 ms are used. The range of order of the samples was further characterized calculating the radial atomic density function from the x-ray diffraction patterns and determining the greatest distances with significant deviations from the average density.


Cellulose Nuclear Magnetic Resonance Material Processing Average Density Great Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Atalla, J. C. Gast, D. W. Sindorf, V. J. Bartuska and G. E. Maciel, J. Am. Chem. Soc., 102, 3249 (1980).Google Scholar
  2. 2.
    W. L. Earl and D. L. VanderHart, J. Am. Chem. Soc., 102, 3251 (1980).Google Scholar
  3. 3.
    G. E. Maciel, W. L. Kolodziejski, M. S. Bertran and B. E. Dale, Macromolecules 15, 686 (1982).Google Scholar
  4. 4.
    C. A. Fyfe, R. L. Dudley, P. J. Stephenson, Y. Deslandes, G. K. Hamer and R. H. Marchessault, J. Macromol. Sci., Rev. in Macromol. Chem. and Phys., C23, 187 (1983).Google Scholar
  5. 5.
    W. L. Earl and D. L. VanderHart, Macromolecules 14, 570 (1981).Google Scholar
  6. 6.
    D. L. VanderHart and R. H. Atalla, Macromolecules, 17, 1465 (1984).Google Scholar
  7. 7.
    J. Kunze, G. Scheler, B. Schröter and B. Philipp, Polym. Bull. 10, 5 (1983).Google Scholar
  8. 8.
    F. Horii, A. Hirai and R. Kitamaru, J. Carbohydr. Chem., 3, 641 (1984).Google Scholar
  9. 9.
    R. Teeäär and E. Lippmaa, Polym. Bull., 12, 315 (1984).Google Scholar
  10. 10.
    T. Paakkari, R. Serimaa and M. Blomberg, To be published.Google Scholar
  11. 11.
    W. Ruland, Acta Cryst. 14, 1180 (1961).Google Scholar
  12. 12.
    C. G. Vonk, J. Appl. Cryst. 6, 148 (1973).Google Scholar
  13. 13.
    R. G. Zhbankov et al., Khimija Drevesiny 4, 3 (1986), (in Russ.).Google Scholar
  14. 14.
    M. Mehring, Principles of High Resolution NMR in Solids. Springer-Verlag, Berlin, Heidelberg, New York, (1983).Google Scholar
  15. 15.
    H.-P. Fink, Private communication.Google Scholar
  16. 16.
    C. N. J. Wagner, Liquid Metals, Chemistry and Physics, ed. Beer S. Z., Marcel Dekker, New York 257 (1972).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. Teeäär
    • 1
  • R. Serimaa
    • 2
  • T. Paakkarl
    • 2
  1. 1.Department of Wood and Polymer ChemistryUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations