, Volume 32, Issue 4, pp 219–226 | Cite as

Albuminuria reflects widespread vascular damage

The Steno hypothesis
  • T. Deckert
  • B. Feldt-Rasmussen
  • K. Borch-Johnsen
  • T. Jensen
  • A. Kofoed-Enevoldsen


Albuminuria in Type 1 (insulin-dependent) diabetes is not only an indication of renal disease, but a new, independent risk-marker of proliferative retinopathy and macroangiopathy. The coincidence of generalised vascular dysfunction and albuminuria, advanced mesangial expansion, proliferative retinopathy, and severe macroangiopathy suggests a common cause of albuminuria and the severe renal and extrarenal complications associated with it. Enzymes involved in the metabolism of anionic components of the extracellular matrix (e.g. heparan sulphate proteoglycan) vulnerable to hyperglycaemia, seem to constitute the primary cause of albuminuria and the associated complications. Genetic polymorphism of such enzymes is possibly the main reason for variation in susceptibility.

Key words

Diabetes albuminuria extracellular matrix heparan sulphate vascular dysfunction 


  1. 1.
    Borch-Johnsen K, Kragh Andersen P, Deckert T (1985) The effect of proteinuria on relative mortality in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 28: 590–596Google Scholar
  2. 2.
    Andersen AR, Sandahl Christiansen J, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: An epidemiological study. Diabetologia 25: 496–501Google Scholar
  3. 3.
    Mogensen CE (1971) Urinary albumin excretion in early and long-term juvenile diabetes. Scand J Clin Lab Invest 28: 183–193Google Scholar
  4. 4.
    Christensen CK, Mogensen CE (1985) The course of incipient diabetic nephropathy: studies of albumin excretion and blood pressure. Diabetic Med 2: 97–102Google Scholar
  5. 5.
    Feldt-Rasmussen B, Dinesen B, Deckert M (1985) Enzyme immunoassay: an improved determination of urinary albumin in diabetics with incipient nephropathy. Scand J Clin Lab Invest 45: 539–544Google Scholar
  6. 6.
    Ellis EN, Steffes MW, Goetz FC, Sutherland DER, Mauer SM (1986) Glomerular filtration surface in Type 1 diabetes mellitus. Kidney Int 29: 889–894Google Scholar
  7. 7.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Kverneland A, Frøkjaer Thomsen O (1986) Clinical assessment and prognosis of complication of diabetes. Transplant Proc 18: 1636–1638Google Scholar
  8. 8.
    Kofoed-Enevoldsen A, Jensen T, Borch-Johnsen K, Deckert T (1987) Incidence of retinopathy in Type 1 (insulin-dependent) diabetes: Association with clinical nephropathy. J Diabetic Complications 3: 96–99Google Scholar
  9. 9.
    Vigstrup J, Mogensen CE (1985) Proliferative diabetic retinopathy: at risk patients identified by early detection of microalbuminuria. Acta Ophthalmol 63: 530–534Google Scholar
  10. 10.
    Barnett AH, Dallinger K, Jennings R, Fletcher J, Odugbesan O (1985) Microalbuminuria and diabetic retinopathy. Lancet 1: 53–54Google Scholar
  11. 11.
    Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL (1986) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: Proteinuria and retinopathy in a population of diabetic persons diagnosed prior to 30 years of age. Diabetic Renal-Retinal Syndrome 3: 245–264Google Scholar
  12. 12.
    Borch-Johnsen K, Kreiner S (1987) Proteinuria — A predictor of cardiovascular mortality in insulin-dependent diabetes mellitus. Br Med J 294: 1651–1654Google Scholar
  13. 13.
    Kannel WB, Stampfer MJ, Castelli WP (1984) The prognostic significance of proteinuria: the Frammingham Study. Am Heart J 108: 1347–1352Google Scholar
  14. 14.
    Yudkin JS, Forrest RD, Jackson CA (1988) Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Lancet 2: 530–533Google Scholar
  15. 15.
    Damsgaard EM, Frøland A, Mogensen CE (1988) Microalbuminuria is a strong predictor of 6-year mortality of elderly Type 2 (non-insulin-dependent) diabetic patients and non-diabetic subjects. Aprospective study. Diabetologia 31: 483–484AGoogle Scholar
  16. 16.
    Nelson RG, Pettitt DJ, Carraher MJ, Baird HR, Knowler WC (1988) The effect of proteinuria on mortality in non-insulin-dependent diabetes mellitus. Diabetes 37: 1499–1504Google Scholar
  17. 17.
    Schrnitz A, Vaeth M (1988) Microalbuminuria: A major risk factor in non-insulin-dependent diabetes. A 10-year follow-up study of 503 patients. Diabetic Med 5: 126–134Google Scholar
  18. 18.
    Jarrett RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murrells TJ (1984) Microalbuminuria predicts mortality in non-insulin-dependent diabetes. Diabetic Med 1: 17–19Google Scholar
  19. 19.
    Valdorf-Hansen F, Jensen T, Borch-Johnsen K, Deckert T (1987) Cardiovascular risk factors in Type 1 (insulin-dependent) diabetic patients with and without proteinuria. Acta Med Scand 222: 439–444Google Scholar
  20. 20.
    Telmer S, Sandahl Christiansen J, Andersen AR, Nerup J, Deckert T (1984) Smoking habits and prevalence of clinical diabetic microangiopathy in insulin-dependent diabetics. Acta Med Scand 215: 63–68Google Scholar
  21. 21.
    Stegmayr B, Lithner F (1987) Tobacco and end stage diabetic nephropathy. Br Med J 295: 581–582Google Scholar
  22. 22.
    Jensen T, Slender S, Deckert T (1988) Abnormalities in plasma concentration of lipoproteins and fibrinogens in Type 1 (insulin-dependent) diabetic patients with increased urinary albumin excretion. Diabetologia 31: 142–145Google Scholar
  23. 23.
    Mattock MB, Keen H, Viberti GC, El-Gohari MR, Murrels TJ, Scott GS, Wing JR, Jackson PG (1988) Coronary heart disease and urinary albumin excretion rate in Type 2 (non-insulin-dependent) diabetic patients. Diabetologia 31: 82–87Google Scholar
  24. 24.
    Bent-Hansen L, Deckert T (1988) Metabolism of albumin and fibrinogen in Type 1 (insulin-dependent) diabetes mellitus. Diabetes Res 7: 159–164Google Scholar
  25. 25.
    Feldt-Rasmussen B (1986) Increased transcapillary escape rate of albumin in Type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 29: 282–286Google Scholar
  26. 26.
    Bent-Hansen L, Feldt-Rasmussen B, Kverneland A, Deckert T (1987) Transcapillary escape rate and relative metabolic clearance of glycated and non-glycated albumin in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 2–4Google Scholar
  27. 27.
    Jensen T, Borch-Johnsen K, Kofoed-Enevoldsen A, Deckert T (1987) Coronary heart disease in young Type 1 (insulin-dependent) diabetic patients with and without diabetic nephropathy: Incidence and risk factors. Diabetologia 30: 144–148Google Scholar
  28. 28.
    Leinonen H, Matikainen E, Juntunen J (1982) Permeability and morphology of skeletal muscle capillaries in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 22: 158–162Google Scholar
  29. 29.
    Dvorak HF, Senger DR, Dvorak AM, Harvey VS, McDonagh J (1985) Regulation of extravascular coagulation by microvascular permeability. Science 227: 1059–1060Google Scholar
  30. 30.
    Ribes JA; Francis CW, Wagner DD (1987) Fibrin induced release of von Willebrand factor from endothelial cells. J Clin Invest 79: 117–123Google Scholar
  31. 31.
    Jensen T (1989) Increased plasma level of von Willebrand factor in Type 1 (insulin-dependent) diabetic patients with incipient nephropathy. Br Med J 298: 27–28Google Scholar
  32. 32.
    Porta M, Townsend C, Clover GM, Nanson M, Alderson AR, McCraw A, Kohner EM (1981) Evidence for functional endothelial cell damage in early diabetic retinopathy. Diabetologia 20: 597–601Google Scholar
  33. 33.
    Feldt-Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bent-Hansen L, Nielsen MD (1987) Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 610–617Google Scholar
  34. 34.
    Toop MJ, Dallinger KJC, Jennings PE, Barnett AH (1986) Angiotensin-converting enzyme (ACE): relationship to insulin dependent diabetes and microangiopathy. Diabetic Med 3: 455–457Google Scholar
  35. 35.
    Lieberman J, Sastre A (1980) Serum angiotensin-converting enzyme: Elevations in diabetes mellitus. Ann Intern Med 93: 825–826Google Scholar
  36. 36.
    Deckert T (1988) Glycemic control and complications. In: Alberti KGMM, Krall LP (eds) The diabetes annual 4. Elsevier Science Publishers, B.V., pp 496–518Google Scholar
  37. 37.
    Krolewski AS, Warram JH, Christlieb AR et al. (1985) The changing natural history of nephropathy in Type 1 diabetes. Am J Med 78: 785Google Scholar
  38. 38.
    Feldt-Rasmussen B, Mathiesen ER, Deckert T (1986) Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet 2: 1300–1304Google Scholar
  39. 39.
    Nergaard K, Storm B, Graae M, Feldt-Rasmussen B (1988) Microalbuminuria and retinal changes in children with Type 1 (insulin-dependent) diabetes mellitus are related to long-term poor metabolic control. Diabetologia 31: 527AGoogle Scholar
  40. 40.
    Mathiesen ER, Rønn B, Jensen T, Storm B, Deckert T (1988) Microalbuminuria precedes elevation in blood pressure in diabetic nephropathy. Diabetologia 31: 519AGoogle Scholar
  41. 41.
    Parving HH, Andersen AR, Smidt UM, Hommel E, Mathiesen ER, Svendsen PA (1987) Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J 294: 1443–1447Google Scholar
  42. 42.
    Deckert T, Parving HH, Andersen AR, Sandahl Christiansen J, Oxenbøll B, Svendson PAa, TelmerS, Christy M, Lauritzen T, Froøkjær Thomsen O, Kreiner S, Andersen JR, Binder C, Nerup J (1982) Diabetic nephropathy. A clinical and morphometric study. In: Eschwege E (ed) Diabetes epidemiology. Elsevier Biomedical Press B.V., pp 235–243Google Scholar
  43. 43.
    Bank N, Klose R, Aynedjian HS, Nguyen D, Sablay LB (1987) Evidence against increased glomerular pressure initiating diabetic nephropathy. Kidney Int 31: 898–905Google Scholar
  44. 44.
    Mauer SM, Steffes MW, Azar S, Brown DM (1988) Thoughts on the pathogenesis of diabetic nephropathy. Diabete Metab 14: 206Google Scholar
  45. 45.
    Anderson S, Brenner BM (1988) Pathogenesis of diabetic glomerulopathy: Hemodynamic considerations. Diabetes Metab Rev 2: 163–177Google Scholar
  46. 46.
    Svejgaard A, Jakobsen BK, Platz P, Ryder LP, Nerup J, Christy M, Borch-Johnsen K, Parving HH, Deckert T, Mølsted-Pedersen L, Kühl C, Buschard K, Green A (1986) HLA associations in insulin-dependent diabetes: search for heterogeneity in different groups of patients from a homogeneous population. Tissue Antigens 28: 237–244Google Scholar
  47. 47.
    Seaquist ER, Goetz FC, Rich S, Barbosa J (1987) Concordance for nephropathy in diabetic siblings: Evidence of genetic susceptibility to diabetic kidney disease. Diabetes 36: [Suppl]: 105AGoogle Scholar
  48. 48.
    Krolewski AS, Canessa M, Warram JH, Laffel LMB, Christlieb R, Knowler WC, Rand LI (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Eng J 3: 140–145Google Scholar
  49. 49.
    Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC (1988) Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J 3: 146–150Google Scholar
  50. 50.
    Viberti GC, Keen H, Wiseman MJ (1987) Raised arterial pressure in parents of proteinuric insulin dependent diabetics. Br Med J 295: 515–517Google Scholar
  51. 51.
    Rohrbach DH, Wagner CW, Star VL, Martin GR, Brown KS, Yoon JW (1983) Reduced synthesis of basement membrane heparan sulfate proteoglycan in streptozotocin-induced diabetic mice. J Biol Chem 19: 11672–11677Google Scholar
  52. 52.
    Schleicher E, Wieland OH (1984) Changes of human glomerular basement membrane in diabetes mellitus. J Clin Chem Clin Biochem 22: 223–227Google Scholar
  53. 53.
    Shimomura H, Spiro RG (1987) Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes. Diabetes 36: 374–381Google Scholar
  54. 54.
    Wu V-Y, Wilson B, Cohen MP (1987) Disturbances in glomerular basement membrane glycosaminogylcans in experimental diabetes. Diabetes 36: 679–683Google Scholar
  55. 55.
    Viberti GC, Keen H (1984) Relevance to pathogenesis and prevention of diabetic nephropathy. Diabetes 33: 686–692Google Scholar
  56. 56.
    Hawthorne GC, MacLellan JR, Mythen M, Alberti KGMM, Turner GA (1986) Studies on glomerular basement membrane in experimental diabetes using lectin histochemistry in Wistar rats. Diabetologia 29: 495–499Google Scholar
  57. 57.
    Cohen MP, Klepser H, Wu V-Y (1988) Undersulfation of glomerular basement membrane heparan sulfate in experimental diabetes and lack of correction with aldose reductase inhibition. Diabetes 37: 1324–1327Google Scholar
  58. 58.
    Bray J, Robinson G (1984) Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int 25: 527–533Google Scholar
  59. 59.
    Kanwar YS, Veis A, Kimura JH, Jakubowski ML (1984) Characterization of heparan sulfate-proteoglycan of glomerular basement membranes. Proc Natl Acad Sci 81: 762–766Google Scholar
  60. 60.
    Stow JL, Sawada H, Farquhar MG (1985) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci 82: 3296–3300Google Scholar
  61. 61.
    Kverneland A, Feldt-Rasmussen B, Vidal P, Welinder B, Bent-Hansen L, Søegaard U, Deckert T (1986) Evidence of changes in renal charge selectivity in patients with Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 29: 634–639Google Scholar
  62. 62.
    Kverneland A, Welinder B, Feldt-Rasmussen B, Deckert T (1988) Improved metabolic control does not alter the charge-dependent glomerular filtration of albumin in uncomplicated Type 1 (insulin-dependent) diabetes. Diabetologia 31: 708–710Google Scholar
  63. 63.
    Vidal P, Welinder BS, Deckert T, Hansen B (1988) Charge heterogeneity of glycated human serum albumin. In: Schafer-Nielsen C (ed) Proceedings. VCH Verlagsgesellschaft, Weinheim, pp 468–473Google Scholar
  64. 64.
    Deckert T, Feldt-Rasmussen B, Djurup R, Deckert M (1988) Glomerular size and charge selectivity in insulin-dependent diabetes mellitus. Kidney Int 33: 100–106Google Scholar
  65. 65.
    Deckert T, Feldt-Rasmussen B, Djurup R, Deckert M (1987) Glomerular size and charge selectivity in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 513AGoogle Scholar
  66. 66.
    Nakamura Y, Myers BD (1988) Charge selectivity of proteinuria in diabetic glomerulopathy. Diabetes 37: 1202–1211Google Scholar
  67. 67.
    Houhala IA, Pastennack A (1987) Fractional dextran and protein clearances in glomerulonephritis and in diabetic nephropathy. Clin Sci 72: 289–296Google Scholar
  68. 68.
    Tomlanovich SJ, Jones HW, Meyers BD (1986) Glomerular capillary wall dysfunction in progressive diabetic nephropathy. Diab Neph 5: 23–26Google Scholar
  69. 69.
    Vernier RL, Sisson-Ross S, Mauer SM (1986) Cytochemical studies of the anionic changes in the kidney in Type 1 diabetes mellitus. Diab Neph 5: 15–18Google Scholar
  70. 70.
    Rohrbach R (1986) Reduced content and abnormal distribution of anionic sites (acid proteoglycans) in the diabetic glomerular basement membrane. Virchows Arch (Cell Pathol) 51: 127–135Google Scholar
  71. 71.
    Morikawa A, Watanabe K, Ishii K (1987) A study of anionic sites in glomerular basement membrane (GBM) in the spontaneously diabetic Chinese hamsters of Asahikawa Colony (CHA). Diabetes 36 [Suppl] 1: 106AGoogle Scholar
  72. 72.
    Caldwell RB, Slapnick SM; McLaughlin BJ (1986) Decreased anionic sites in Bruch's membrane of spontaneous and drug-induced diabetes. Invest Ophthalmol Vis Sci 27: 1691–1697Google Scholar
  73. 73.
    Gambaro G, Baggio B, Cicerello E, Mastrosimone S, Marzaro G, Borsati A, Crepaldi G (1988) Abnormal erythrocyte charge in diabetes mellitus. Diabetes 37: 745–748Google Scholar
  74. 74.
    Raz I, Havivi Y, Yarom R (1988) Reduced negative surface charge on arterial endothelium of diabetic rats. Diabetologia 31: 618–620Google Scholar
  75. 75.
    Kanwar YS, Faraquhar MG (1979) Presence of heparan sulfate in glomerular basement membrane. Proc Natl Acad Sci 76: 1303–1307Google Scholar
  76. 76.
    Heickendorff L, Ledet T (1984) Glycosaminoglycans of arterial basement membrane-like material from cultured rabbit aortic myomedial cells. Bichim Biophys Acta 798: 276–282Google Scholar
  77. 77.
    Kanwar YS, Jakubowski MI, Rosenzweig IJ (1983) Distribution of sulfated glycosamingoglycans in the glomerular basement membrane and mesangial matrix. Eur J Cell Biol 31: 290–295Google Scholar
  78. 78.
    Robinson J, Gospodarowicz D (1984) Effect of p-Nitrophenyl-β-D-xyloside on proteoglycan synthesis and extracellular matrix formation by bovine corneal endothelial cell cultures. J Biol Chem 259: 3818–3824Google Scholar
  79. 79.
    Rosenzweig LJ, Kanwar YS (1982) Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab Invest 47: 177–183Google Scholar
  80. 80.
    Groggel GC, Stevenson J, Hovingh P, Linker A, Border WA (1988) Changes in heparan sulfate correlate with increased glomerular permeability. Kidney Int 33: 517–523Google Scholar
  81. 81.
    Cotran RS, Rennke HG (1983) Anionic sites and the mechanisms of proteinuria. N Engl J 309: 1050–1052Google Scholar
  82. 82.
    Gallagher JT, Lyon M, Steward WP (1986) Structure and function of heparan sulphate proteoglycans. Biochem J 236: 313–325Google Scholar
  83. 83.
    Tarsio JF, Reger LA, Furcht LT (1988) Molecular mechanisms in basement membrane complications of diabetes. Diabetes 37: 532–539Google Scholar
  84. 84.
    Hunsicker LG, Shearer TP, Shaffer SJ (1981) Acute reversible proteinuria induced by infusion of the polycation hexadimethrine. Kidney Int 20: 7–17Google Scholar
  85. 85.
    Castellot JJ, Hoover RL, Harper PA, Karnovsky MJ (1985) Heparin and glomerular epithelial cell-secreted heparin-like species inhibit mesangial-cell proliferation. Am J Pathol 120: 427–435Google Scholar
  86. 86.
    Purkerson ML, Tollefsen DM, Klahr S (1988) N-desulfated/acetulated heparin ameliorates the progression of renal disease in rats with subtotal renal ablation. J Clin Invest 81: 69–74Google Scholar
  87. 87.
    Marcum JA, McKenney JB, Rosenberg RD (1984) Acceleration of thrombin-antithrombin complex formation rat hindquarters via heparin-like molecules bound to the endothelium. J Clin Invest 74: 341–350Google Scholar
  88. 88.
    Marcum JA, Atha DH, Fritze LMS, Nawroth P, Stern D, Rosenberg RD (1986) Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate progeoglycan. J Biol Chem 261: 7507–7517Google Scholar
  89. 89.
    Pejler G, Bäckström G, Lindahl U (1987) Structure and affinity for antithrombin of heparan sulfate chains derived from basement membrane proteoglycans. J Biol Chem 262: 5036–5043Google Scholar
  90. 90.
    Marcum JA, Fritze L, Galli SJ, Karp G, Rosenberg RD (1984) Microvascular heparin-like species with anticoagulant activity. Am J Physiol 245: H725-H733Google Scholar
  91. 91.
    Ishibashi T, Tanaka K, Taniguchi Y (1981) Platelet aggregation and coagulation in the pathogenesis of diabetic retinopathy in rats. Diabetes 30: 601–606Google Scholar
  92. 92.
    Dallinger KJC, Jennings PE, Toop MJ, Gyde OHB, Barnett AH (1987) Platelet aggregation and coagulation factors in insulin dependent diabetics with and without microangiopathy. Diabetic Med 4: 44–48Google Scholar
  93. 93.
    Deuel TF, Huang JS (1984) Platelet-derived growth factor: structure, function and roles in normal and transformed cells. J Clin Invest 74: 669–676Google Scholar
  94. 94.
    Abboud HE, Poptic E, DiCorleto P (1987) Production of platelet-derived growth factor-like protein by Rat Mesangial cells in culture. J Clin Invest 80: 675–683Google Scholar
  95. 95.
    Donadio JV, Ilstrup DM, Holley KE, Romero JC (1988) Platelet-inhibitor treatment of diabetic nephropathy: A 10-year prospective study. Mayo Clin Proc 63: 3–15Google Scholar
  96. 96.
    Williams MP, Streeter HB, Wusteman FS, Cryer A (1983) Heparan sulphate and the binding of lipoprotein lipase to porcine thoracic aorta endothelium. Biochim Biophys Acta 756: 83–91Google Scholar
  97. 97.
    Staprans I, Felts JM, Couser WG (1987) Glycosaminoglycans and chylomicron metabolism in control and nephrotic rats. Metabolism 36: 496–501Google Scholar
  98. 98.
    Castellot JJ, Beeler DL, Rosenberg RD, Karnowsky MJ (1984) Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. J Cell Physiol 120: 315–320Google Scholar
  99. 99.
    Dybdahl H, Ledet T (1987) Diabetic macroangiopathy. Diabetologia 30: 882–886Google Scholar
  100. 100.
    Slender S, Hjelms E (1987) In vivo transfer of cholesterol from plasma into human aortic tissue. Scand J Clin Lab Invest 47: 21–29Google Scholar
  101. 101.
    Berenson GS, Radhakrishnamurthy B, Srinivasan SR, Vijayagopal P, Dalferes ER, Sharma C (1984) Recent advances in molecular pathology. Exp Mol Pathol 41: 267–287Google Scholar
  102. 102.
    Kanwar YS, Rosenzweig LJ, Linker A, Jakubowski ML (1983) Decreased de novo synthesis of glomerular proteoglycans in diabetes: Biochemical and autoradiographic evidence. Proc Natl Acad Sci 80: 2272–2275Google Scholar
  103. 103.
    Hassel JM, Noonan DM, Ledbetter SR, Laurie GW (1986) Biosynthesis and structure of the basement membrane proteoglycan containing heparan sulphate side-chains. In: Evered D, Whelan J Functions of the proteoglycans. John Wiley & Sons, Chichester New York Brisbane Toronto, pp 204–222Google Scholar
  104. 104.
    Lindahl U, Höök M (1978) Glycosaminogylcans and their binding to biological macromolecules. Annu Rev Biochem 47: 385–417Google Scholar
  105. 105.
    Graham JM, Winterbourne DJ (1988) Subcellular localization of the sulphation reaction of heparan sulphate synthesis and transport of the proteoglycan to the cell surface in rat liver. Biochem J 252: 437–445Google Scholar
  106. 106.
    Lindahl U, Feingold DS, Rodén L (1986) Biosynthesis of heparin. TIBS 11: 221–225Google Scholar
  107. 107.
    Kjellén L, Bielefeld D, Hook M (1983) Reduced sulfation of liver heparan sulfate in experimentally diabetic rats. Diabetes 32: 337–342Google Scholar
  108. 108.
    Spiro MJ (1987) Sulfate metabolism in the alloxan-diabetic rat: relationship of altered sulfate pools to proteoglycan sulfation in heart and other tissues. Diabetologia 30: 259–267Google Scholar
  109. 109.
    Klein JD, Brown DM, Oegema TR (1986) Glomerular proteoglycans in diabetes. Diabetes 35: 1130–1142Google Scholar
  110. 110.
    Levy P, Picard J, Bruel A (1984) Evidence for diabetes-induced alterations in the sulfation of heparan sulfate in intestinal epithelial cells. Life Sci 35: 2613–20Google Scholar
  111. 111.
    Eriksson UJ, Kjellén L, Unger E (1986) Decreased levels of high molecular weight proteoglycan in diabetic rats of a malformation prone strain. Diabetologia 29: 545AGoogle Scholar
  112. 112.
    Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Goetz FC (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74: 1143–1155Google Scholar
  113. 113.
    Jensen T, Bjerre-Knudsen J, Feldt-Rasmussen B, Deckert T (1989) Features of endothelial dysfunction in early diabetic nephropathy. Lancet I: 461–463Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • T. Deckert
    • 1
  • B. Feldt-Rasmussen
    • 1
  • K. Borch-Johnsen
    • 1
  • T. Jensen
    • 1
  • A. Kofoed-Enevoldsen
    • 1
  1. 1.Steno Memorial HospitalGentofteDenmark

Personalised recommendations