, Volume 33, Issue 3, pp 273–283 | Cite as

Karyotypic changes in callus cultures from haploid and diploid plants of Crepis capillaris (L.) Wallr

  • M. D. Sacristán


Two auxin-heterotrophic callus cultures of Crepis capillaris, one coming from an haploid plant and the other from a diploid one, were studied in regard to karyotypic changes for over a year. The degree of polyploidisation of the originally haploid culture was considerably higher than that of the diploid culture. The frequency of chromosome rearrangements was significantly higher in polyploidised karyotypes than in not polyploidised karyotypes and correspondingly greater in the “haploid” culture. However, the cytogenetical stability of the cultures cannot be measured only through their degree of polyploidisation: it has been found that new karyotypes also originate through chromosome rearrangements at the same ploidy level as the original explant.


Developmental Biology Ploidy Level Chromosome Rearrangement Callus Culture Haploid Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayreuther, K.: Chromosomes in primary neoplastic growth. Nature (Lond.) 186, 6–9 (1960).Google Scholar
  2. Fenzl, E., Tsohermak-Woess, E.: Untersuchungen zur karyologisohen Anatomie der Achse der Angiospermen. Österr. bot. Z. 101, 140–164 (1954).Google Scholar
  3. Hsu, T. C.: Chromosome evolution in cell populations. Intern. Rev. Cytol. 12, 69–161 (1961).Google Scholar
  4. Hughes, D. T.: Cytogenetical polymorphism and evolution in mammalian somatic cell populations in vivo and in vitro. Nature (Lond.) 217, 518–523 (1968).Google Scholar
  5. Krooth, R. S., Darlington, G. A., Velazquez, A. A.: The genetics of cultured mammalian cells. Ann. Rev. Microbiol. 22, 141–164 (1968).Google Scholar
  6. Kuroiwa, T., Tanaka, N.: DNA replication pattern in somatic chromosomes of Crepis capillaris. Cytologia (Tokyo) 35, 271–279 (1970).Google Scholar
  7. Mark, J.: Rous sarcomas in mice: The chromosomal progression during early in vivo transplantation. Hereditas (Lund) 65, 59–82 (1970).Google Scholar
  8. Matthysse, A. G., Torrey, J. G.: Factors limiting the stimulation of polyploid mitosis in intact pea roots and excised root segments. Bot. Gaz. 130, 62–69 (1969).Google Scholar
  9. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497 (1962).Google Scholar
  10. Pätau, K., Das, N. K.: The relation of DNA synthesis and mitosis in tobacco pith tissue cultured in vitro. Chromosoma (Berl.) 11, 353–572 (1961).Google Scholar
  11. Partanen, C. R.: Cytological behavior of plant tissues in vitro as a reflection of potentialities in vivo. In: Proc. Intern. Conf. Plant Tissue Culture (P. R. White and A. R. Grove, eds.), p. 463–471. Berkeley, Calif.: McCutchan Publ. Corp. 1965.Google Scholar
  12. Reinert, J., Küster, H.-J.: Diploide, chlorophyllhaltige Gewebekulturen aus Blättern von Crepis capillaris (L.) Wallr. Z. Pflanzenphysiol. 54, 213–222 (1966).Google Scholar
  13. Richart, R. M., Corfman, P. A.: Chromosome number and morphology of a human preinvasive neoplasm. Science 144, 65–67 (1964).Google Scholar
  14. Sacristán, M. D.: Auxin-Autotrophie und Chromosomenzahl. Molec. Gen. Genetics 99, 311–321 (1967).Google Scholar
  15. — Melchers, G.: Agrobacterium-indazierte Pflanzentumoren und durch sie entstehende entwicklungsphysiologische und cytogenetische Probleme. Kulturpflanze 6, 111–126 (1970).Google Scholar
  16. - Wendt-Gallitelli, M. F.: Transformation to auxin-autotrophy and its reversibility in a mutant line of Crepis capillaris callus culture. Molec. Gen. Genetics (in press, 1971).Google Scholar
  17. Shamina, Z. B.: Cytogenetic study of tissue culture of Haplopappus gracilis. In: Proc. Symp. on the Mutational Process. Mechanism of mutation andinducing factors (Z. Landa, ed.), p. 377–380. Prague: Academia 1966.Google Scholar
  18. Torrey, J. G.: Kinetin as trigger for mitosis in mature endomitotic plant cells. Exp. Cell Res. 23, 281–299 (1961).Google Scholar
  19. — Cytological evidence of cell selection by plant tissue culture media. In: Proc. Intern. Conf. Plant Tissue Culture. (P. R. White and A. R. Grove, eds.), p. 473–484. Berkeley, Calif.: McCutchan Publ. Corp. 1965.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • M. D. Sacristán
    • 1
  1. 1.Max-Planck-Institut für Biologie Abt. MelchersTübingenGermany

Personalised recommendations