Advertisement

Functions of bounded deformation

  • Roger Temam
  • Gilbert Strang
Article

Abstract

We study the space BD(Ω), composed of vector functions u for which all components εij=1/2(ui, j+uj, i) of the deformation tensor are bounded measures. This seems to be the correct space for the displacement field in the problems of perfect plasticity. We prove that the boundary values of every such u are integrable; indeed their trace is in L1 (Γ)N. We show also that if a distribution u yields ɛij which are measures, then u must lie in Lp(Ω) for p≦N/(N−1).

Keywords

Neural Network Complex System Nonlinear Dynamics Vector Function Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deny, J., & J.L. Lions, Les espaces du type de Beppo-Levi. Ann. Inst. Fourier, 5, 305–370 (1954).Google Scholar
  2. 2.
    Ekeland, I., & R. Temam, Convex Analysis and Variational Problems. Amsterdam: North-Holland 1976.Google Scholar
  3. 3.
    Gagliardo, E., Caratterizzazioni delle trace sulla frontiera relative alcune classi di funzioni in n variabili. Rend. Semin. Mat. Padova, 27, 284–305 (1957).Google Scholar
  4. 4.
    Kohn, R., Ph.D. thesis, Princeton University (1979).Google Scholar
  5. 5.
    Lichnewsky, A., Sur un probléme intervenant dans l'étude de la plasticité. C.R. Acad. Sc. Paris, 287, 1069–1072 (1978).Google Scholar
  6. 6.
    Matthies, H., G. Strang, & E. Christiansen, The saddle point of a differential program, in “Energy methods in finite element analysis,” volume dedicated to Professor Fraeijs de Veubeke; Glowinski, R., Rodin, E., Zienkiewicz, O.C., eds. New York: John Wiley 1979.Google Scholar
  7. 7.
    Miranda, M., Comportamento delle successioni convergenti di frontiere minimali. Rend. Semin. Univ. Padova, 238–257 (1967)Google Scholar
  8. 8.
    Moreau, J.J., Champs et distributions de tenseurs déformation sur un ouvert de connexité quelconque. Seminaire d'Analyse Convexe, Univ. de Montpellier, 6 (1976).Google Scholar
  9. 9.
    Paris, L., Etude de la régularité d'un champ de vecteurs à partir de son tenseur déformation. Seminaire d'Analyse Convexe, Univ. de Montpellier, 12 (1976).Google Scholar
  10. 10.
    Strang, G., A family of model problems in plasticity. Proc. Symp. Comp. Meth. in Appl. Sc., R. Glowinski and J.L. Lions, ed., Springer Lecture Notes 704, 292–308 (1979).Google Scholar
  11. 11.
    Strang, G., A minimax problem in plasticity theory, Functional Analysis and Numerical Analysis, M.Z. Nashed, ed., Springer Lecture Notes 701, 319–333 (1979).Google Scholar
  12. 12.
    Strang, G., H. Matthies, & R. Temam, Mathematical and computational methods in plasticity, Proceedings of IUTAM Conference on Variational Methods in the Mechanics of Solids, Evanston (1978), (to be published).Google Scholar
  13. 13.
    Strauss, M.J., Variations of Korn's and Sobolev's inequalities. Berkeley symposium on partial differential equations, A.M.S. Symposia Vol. 23 (1971).Google Scholar
  14. 14.
    Suquet, P., Existence et régularité des solutions des équations de la plasticité parfaite. Thèse de 3eme Cycle, Université de Paris VI, (1978), et C.R. Acad. Sc. Paris, 286, Ser. D, 1201–1204 (1978).Google Scholar
  15. 15.
    Temam, R., Mathematical problems in plasticity theory. Proceedings of Symposium on Complementarity Problems and Variational Inequalities. Erice, Sicily, (1978). Cottle, R.W., Gionnessi, F., Lions, J.L., eds. New York: John Wiley 1980.Google Scholar
  16. 16.
    Temam, R., & G. Strang, Existence de solutions relaxées pour les équations de la plasticité: Etude d'un espace fonctionnel. C.R. Acad. Sc. Paris, 287, 515–518 (1978).Google Scholar
  17. 17.
    Temam, R., & G. Strang, Duality and relaxation in plasticity. J. de Mécanique, 19, 1–35 (1980).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Roger Temam
    • 1
    • 2
  • Gilbert Strang
    • 1
    • 2
  1. 1.Laboratoire d'Analyse NumériqueUniversité de Paris-SudOrsay
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyUSA

Personalised recommendations