Advertisement

Human Genetics

, Volume 71, Issue 2, pp 163–166 | Cite as

Mapping of human thyroglobulin gene on the long arm of chromosome 8 by in situ hybridization

  • V. E. Avvedimento
  • R. Di Lauro
  • A. Monticelli
  • F. Bernardi
  • P. Patracchini
  • E. Calzolari
  • G. Martini
  • S. Varrone
Original Investigations

Summary

We report the structural organization of a segment of the human thyroglobulin gene, located 70kb from the 3′ end of the gene, containing the exons 8 and 9 starting from the 3′ end. Selected probes from this region have been used for the chromosomal mapping of the thyroglobulin gene by in situ hybridization techniques. Only one site in the human haploid karyotype is labeled with the genomic DNA probes. Twenty percent of the grains are localized on the long arm of chromosome 8, mostly in the subregion q-2-23 q-2-24 of the long arm of chromosome 8. The localization of the autoradiographic grains suggests a subregional assignment of the human thyroglobulin gene locus to 8q 2–23 or 8q 2–24.

Keywords

Internal Medicine Metabolic Disease Structural Organization Gene Locus Thyroglobulin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avvedimento VE, Musti AM, Obici S, Cocozza S, Di Lauro R (1984) Structural organization of the 3′ half of rat thyroglobulin gene. Nucleic Acids Res 12:3461–3472Google Scholar
  2. Benton W, Davis R (1977) Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196:180–182Google Scholar
  3. Chandler ME, Yunis JJ (1978) A high resolution in situ hybridization technique for the direct visualization of labeled early metaphase and prophase chromosomes. Cytogenet Cell Genet 22:352–356Google Scholar
  4. Dalla Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc one gene isolated on the region of chromosome 8 that is translocated in Burkitt lymphona cells. Proc Natl Acad Sci USA 79:7824–7827Google Scholar
  5. De Lange F, Beckers C, Höfer R, Köning MP, Monaco F, Varrone S (1980) In: Burrow GN, Dussault JH (eds) Neonatal thyroid screening. Kaven Press, New York, pp 107–131Google Scholar
  6. Del Senno L, Bernardi F, Buzzoni D, Marchetti G, Perrotta C, Conconi F (1981) Molecular characteristics of a non-deletion alphathalassemia of the Po river delta. Eur J Biochem 116:127–130Google Scholar
  7. De Martynoff G (1983) Characterization of thyroglobulin gene fragments obtained from a bovine genome DNA library. Ann Endocrinol (Paris) 44:46AGoogle Scholar
  8. Di Lauro R, Condliffe D, Obici S, Ursini V, Avvedimento VE (1983) Cloning of the entire rat thyroglobulin cDNA: Sequence analysis of the 3′ end. Ann Endocrinol (Paris) 44:48AGoogle Scholar
  9. Edelhoch H, Robbins J (1978) In: Werner SC, Ingbar VE (eds) In: Thyroid. Harper and Row, New York, pp 62–76Google Scholar
  10. Harper ME, Saunders GF (1981) Localization of single copy DNA sequences on G banded human chromosome by in situ hybridization. Chromosoma 83:431–439Google Scholar
  11. Harper ME, Ullrich A, Saunders GF (1981) Localization of the human insulin gene to the distal end of the short arm of chromosome 11. Proc Natl Acad Sci USA 78:4458–4460Google Scholar
  12. Jhanwar SC, Neel BG, Hayward WS, Chaganti RSK (1983) Localization of c-ras oncogene family on germ line chromosomes. Proc Natl Acad Sci USA 80:4794–4797Google Scholar
  13. Kirsch IR, Morton C, Navarra K, Leder P (1982) Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science 216:301–303Google Scholar
  14. Malcolm P, Barton P, Murphy C, Ferguson-Smith MA (1981) Chromosome localization of a single copy gene by in situ hybridization. Human globin genes on the short arm of chromosome 11. Ann Hum Genet 45:135–141Google Scholar
  15. Rigby PWJ, Dieckmann M, Rhodes C, Berg R (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251Google Scholar
  16. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  17. Targovnick HM, Pohl V, Christophe D, Cabrer B, Brocas H, Vassart G (1984) Structural organization of the 5′ region of the human thyroglobulin gene. Eur J Biochem 141:271–277Google Scholar
  18. Thomas PC (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 72:5201–5205Google Scholar
  19. Van Herle A, Vassart G, Dumont JE (1979) Control of thyroglobulin synthesis and secretion. N Engl J Med 301:239–249Google Scholar
  20. Van Ommen GJB, Arnberg AC, Baas F, Brocas H, Stark A, Tegelaers WHH, Vassart G, De Vijlders JM (1983) The human thyroglobulin gene contains two 15–17kb introns near its 3′ end. Nucleic Acids Res 11:2273–2285Google Scholar
  21. Van Ommen GJB, Baas F, Arnberg AC, Pearson PL, De Vijlder JM (1984) Chromosome mapping and polymorphism study in the human thyroglobulin gene. Cytogenet Cell Genet 37:562Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • V. E. Avvedimento
    • 1
  • R. Di Lauro
    • 1
  • A. Monticelli
    • 1
  • F. Bernardi
    • 2
  • P. Patracchini
    • 2
  • E. Calzolari
    • 3
  • G. Martini
    • 4
  • S. Varrone
    • 1
  1. 1.Dipartimento di Biologia e Patologia Cellulare e MolecolareCentro di Endocrinologia ed Oncologia Sperimentale del C.N.R.NapoliItaly
  2. 2.Morbo di CooleyCentro Studi Biochimici46 FerraraItaly
  3. 3.Istituto di Genetical MedicaUniversità degli Studi di FerraraFerraraItaly
  4. 4.Istituto Internazionale di Genetica e BiofisicaIGBNapoliItaly

Personalised recommendations