Advertisement

Water, Air, and Soil Pollution

, Volume 48, Issue 3–4, pp 349–390 | Cite as

Simulation of the long-term soil response to acid deposition in various buffer ranges

  • W. De Vries
  • M. Posch
  • J. Kämäri
Article

Abstract

A soil acidification model has been developed to estimate long-term chemical changes in soil and soil water in response to changes in atmospheric deposition. Its major outputs include base saturation, pH and the molar Al/BC ratio, where BC stands for divalent base cations. Apart from net uptake and net immobilization of N, the processes accounted for are restricted to geochemical interactions, including weathering of carbonates, silicates and Al oxides and hydroxides, cation exchange and CO2 equilibriums. First, the model's behavior in the different buffer ranges between pH 7 and pH 3 is evaluated by analyzing the response of an initially calcareous soil of 50 cm depth to a constant high acid load (5000 molc ha−1 yr−1) over a period of 500 yr. In calcareous soils weathering is fast and the pH remains high (near 7) until the carbonates are exhausted. Results indicate a time lag of about 100 yr for each percent CaCO3 before the pH starts to drop. In non-calcareous soils the response in the range between pH 7 and 4 mainly depends on the initial amount of exchangeable base cations. A decrease in base saturation by H/BC exchange and Al/BC exchange following dissolution of Al3+ leads to a strong increase in the Al/BC ratio near pH 4. A further decrease in pH to values near 3.0 does occur when the A1 oxides and/or hydroxides are exhausted. The analyses show that this could occur in acid soils within several decades. The buffer mechanisms in the various pH ranges are discussed in relation to Ulrich's concept of buffer ranges. Secondly, the impact of various deposition scenarios on non-calcareous soils is analyzed for a time period of 100 yr. The results indicate that the time lag between reductions in deposition and a decrease in the Al/BC ratio is short. However, substantial reductions up to a final deposition level of 1000 molc ha−1 yr−1 are needed to get Al/BC ratios below a critical value of 1.0.

Keywords

Calcareous Soil Base Cation Base Saturation Exchangeable Base Exchangeable Base Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcamo, J., Amann, M., Hettelingh, J.-P., Holmberg, M., Hordijk, L., Kamari, J., Kauppi, L., Kauppi, P., Kornai, G., and Mäkelä, A.: 1987, Ambio 16, 232.Google Scholar
  2. Arp, P. A.: 1983, Ecol. Modelling 19, 105.Google Scholar
  3. Asman, W. A. H.: 1987, ‘Atmospheric Behaviour of Ammonia and Ammonium’, Ph.D. Thesis, Wageningen, The Netherlands.Google Scholar
  4. Bache, B.: 1974, J. Soil Sci. 25, 331.Google Scholar
  5. Bloom, P. R. and Grigal, D. F.: 1985, J. Environ. Qual. 14, 489.Google Scholar
  6. Brent, R. P.: 1973, Algorithms for Minimization without Derivatives, Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  7. Chen, C. W., Gherini, S. A., Hudson, R. J. M., and Dean, J. D.: 1983, The Integrated Lake-Watershed Acidification Study. Volume 1: Model principles and application procedures, EPRI EA-3221, Volume 1, Research Project 1109-5, TETRA TECH INC., Lafayette, California.Google Scholar
  8. Christensen, B., Mortensen, P. B., and Petersen, T.: 1985, Illustration of the Present Capabilities of the ECCES Program System, Risø National Laboratory, Denmark: M-2501.Google Scholar
  9. Christophersen, N., Seip, H. M., and Wright, R. F.: 1982, Wat. Resour. Res. 18, 977.Google Scholar
  10. Clark, J. S. and Hill, R. G.: 1964, Soil Sci. Soc. Am. J. 28, 490.Google Scholar
  11. Cosby, B. J., Hornberger, G. M., Galloway, J. N., and Wright, R. F.: 1985a, Wat. Resour. Res. 21, 51.Google Scholar
  12. Cosby, B. J., Wright, R. F., Hornberger, G. M., and Galloway, J. N.: 1985b, Wat. Resour. Res. 21, 1591.Google Scholar
  13. Cosby, B. J., Hornberger, J. M., Galloway, J. N., and Wright, R. F.: 1985c, Environ. Sci. Technol. 19, 1144.Google Scholar
  14. Cronan, C. S., Walker, W. J., and Bloom, P. R.: 1986, Nature 324, 140.Google Scholar
  15. De Vries, W. and Breeuwsma, A.: 1986, Water, Air, and Soil Pollut. 28, 173.Google Scholar
  16. De Vries, W. and Breeuwsma, A.: 1987, Water, Air, and Soil Pollut. 35, 293.Google Scholar
  17. De Vries, W.: 1987, A Conceptual Model for Analysing Soil and Groundwater Acidification on a Regional Scale, Proc. Int. Symp. on Acidification and Water Pathways, Vol. I, May 4–8, Bolkesjø, Norway, p. 185.Google Scholar
  18. De Vries, W.: 1988a, Water, Air, and Soil Pollut. 42, 221.Google Scholar
  19. De Vries, W.: 1988b, ‘Critical Loads for Sulphur and Nitrogen on Forests, Groundwater and Surface Water’, in Air Pollution in Europe: Environmental Effects, Control Strategies and Policy Options, Discussion Document for a Conference on Air Pollution, Nörrtalje, September 1988.Google Scholar
  20. De Vries, W.: 1989, ‘Philosophy, Structure and Application Methodology of a Soil Acidification Model for the Netherlands’', in J. Kamari (ed.), Impact Models to Assess Regional Acidification, Kluwer Academic Publishers, Dordrecht, The Netherlands (in press).Google Scholar
  21. De Vries, W. and Kros, J.: 1989, in J. Kämäri, D. F. Brakke, A. Jenkins, S. A. Norton, and R. F. Wright (eds.), Regional Acidifcation Models: Geographic Extent and Time Development, Springer, New York, p. 113.Google Scholar
  22. Eary, L. E., Jenne, E. A., Vail, L. W., and Girvin, D. C.: 1989, Archiv. Environ. Contam. Toxicol. 18, 29.Google Scholar
  23. Falkengren-Grerup, U., Linnermark, N., and Tyler, G.: 1987, Chemosphere 16, 2239.Google Scholar
  24. Fölster, H.: 1985, in J. I. Brever (ed.), The Chemistry of Weathering, Kluwer Acad. Publ., Dordrecht, Holland, p. 197.Google Scholar
  25. Gaines, G. L. and Thomas, H. C.: 1953, J. Chem. Phys. 21, 714.Google Scholar
  26. Galloway, J. N., Likens, G. E., Keene, W. C., and Miller, J. M.: 1982, J. Geophys. Res. 87, 8771.Google Scholar
  27. Galloway, J. N., Likens, G. E., and Hawley, M. E.: 1984, Science 226, 829.Google Scholar
  28. Helgeson, H. C., Murphy, W. M., and Aagaard, P.: 1984, Geochim. Cosmochim. Acta 48, 2405.Google Scholar
  29. Helling, C. S., Chesters, G., and Corey, R. B.: 1964, Soil Sci. Soc. Am. J. 28, 517.Google Scholar
  30. Henriksen, A.: 1979, Nature 278, 542.Google Scholar
  31. Hornberger, G. M., Beven, K. J., Cosby, B. J., and Sappingten, D. E.: 1985, Wat. Resour. Res. 21, 1841.Google Scholar
  32. Hultberg, H.: 1988, in J. Nilsson and P. Grennfelt (eds.), Critical Loads for Sulphur and Nitrogen, Miljorapport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark, p. 185.Google Scholar
  33. Ivens, W., Kauppi, P., Alcamo, J., and Posch, M.: 1989, Sulfur Deposition onto European Forests: Throughfall Data and Model Estimates Tellus (in press).Google Scholar
  34. Johansson, M., Savolainen, I., and Tähtinen, M.: 1989, in J. Kamari, D. F. Brakke, A. Jenkins, S. A. Norton, and R. F. Wright (eds.), Regional Acidification Models: Geographic Extent and Time Development, Springer, New York, p. 203.Google Scholar
  35. Johnson, D. W.: 1980, in T. C. Hutchinson and M. Havas (eds.), Effects of Acid Precipitation on Terrestrial Ecosystems, Plenum, New York, p. 525.Google Scholar
  36. Kämäri, J.: 1987, Prediction Models for Acidification, Proc. Int. Symp. on Acidification and Water Pathways, Vol. I, May 4–8, Bolkesjo, Norway, p. 405.Google Scholar
  37. Kämäri, J.: 1988, ‘Regional Lake Acidification Sensitivity and Dynamics’, Ph.D. thesis, University of Helsinki.Google Scholar
  38. Kauppi, P., Kamari, J., Posch, M., Kauppi, L., and Matzner, E.: 1986, Ecol. Modelling 33, 231.Google Scholar
  39. Kleijn, C. E. and De Vries, W.: 1987, in W. van Duijvenbooden and H. G. van Waegening (eds.), Proc. Int. Conf. on Vulnerability of Soil and Groundwater to Pollutants, March 30 – April 3, Noordwijk aan Zee, The Netherlands. Proceedings and Information No. 38 TNO-CHO/RIVM, The Hague, p. 591.Google Scholar
  40. Kleijn, C. E., Zuidema, G., and De Vries, W.: 1989, De indirecte effecten van atmosferische depositie op de vitaliteit van de Nederlandse bossen. 2. Depositie, bodemeigenschappen en bodemvochtsamenstelling van acht Douglasopstanden, STIBOKA Rapport 2050.Google Scholar
  41. Klemedtson, L. and Svensson, B.H.: 1988, in J. Nilsson and P. Grennfelt (eds.), Critical Loads for Sulphur and Nitrogen, Miljorappport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark, p. 343.Google Scholar
  42. KNMI/RIVM: 1985, Chemische samenstelling van de neerslag over Nederland, Jaarrapport 1985.Google Scholar
  43. Lindsay, W. L.: 1979, Chemical Equilibria in Soils, J. Wiley and Sons, New York. May, H. M., Helmke, P. A., and Jackson, M. L.: 1979, Geochim. Cosmochim. Acta 43, 861.Google Scholar
  44. Müller, M. J., 1982, Selected Climatic Data for a Global Set of Standard Stations for Vegetation Science, Dr. W. Junk Publ., The Hague.Google Scholar
  45. Mulder, J. and Van Breemen, N.: 1987, in T. C. Hutchinson and K. M. Meema (eds.), Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems, Springer Verlag, Berlin-Heidelberg, F. R. G., p. 361.Google Scholar
  46. Mulder, J., Van Grinsven, J. J. M., and Van Breemen, N.: 1987, Soil Sci. Soc. Am. J. 51, 1640.Google Scholar
  47. Mulder, J., Van Breemen, N., and Eijck, H. C.: 1989a, Nature 337, 247.Google Scholar
  48. Mulder, J., Van Breemen, N., Rasmussen, L., and Driscoll, C. T.: 1989b, Aluminum Chemistry of Acidic Sandy Soils with Various Input of Acidic Deposition in the Netherlands and in Denmark, Geoderma (submitted).Google Scholar
  49. Nilsson, S. L.: 1985, in F. Andersson and B. Olsson (eds.), Lake Gårdsjön. An Acid Forest Lake and its Catchment, Ecol. Bulletins 37, 311.Google Scholar
  50. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1986, Numerical Recipes — The Art of Scientific Computing, Cambridge UP.Google Scholar
  51. Reuss, J. O.: 1980, Ecol. Modelling 11, 15.Google Scholar
  52. Reuss, J. O.: 1983, J. Environ. Qual. 12, 591.Google Scholar
  53. Reuss, J. O. and Johnson, D. W.: 1985, J. Environ. Qual. 14, 26.Google Scholar
  54. Reuss, J. O., Christophersen, N., and Seip, H. M.: 1986, Water, Air, and Soil Pollut. 30, 909.Google Scholar
  55. Robie, R. A. and Waldbaum, D. R.: 1968, Geol. Surv. Bull. 1259.Google Scholar
  56. Roelofs, J. G. M., Kempers, A. J., Houdijk, A. L. F. M., and Jansen, J.: 1985, Plant and Soil 84, 45.Google Scholar
  57. Rosén, K.: 1982, Supply, Loss and Distribution of Nutrients in Three Coniferous Forest Watersheds in Central Sweden, Reports in Forest Ecology and Forest Soils 41, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  58. Rosén, K.: 1988, in J. Nilsson and P. Grennfelt (eds.), Critical Loads for Sulphur andNitrogen, Miljørapport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark, p. 269.Google Scholar
  59. Rustad, S., Christophersen, N., Seip, H. M., and Dillon, P. J.: 1986, Can. J.Fish. Aquat. Sci. 43, 625.Google Scholar
  60. Schnoor, J. L., Nikolaidis, N. P., and Glass, S. E.: 1986, J. Water Pollut. Contr. Fed. 58, 139.Google Scholar
  61. Sverdrup, H. U. and Warfvinge, P. G.: 1988a, in J. Nilsson and P. Grennfelt (eds.), Critical Loads for Sulphur and Nitrogen, Miljorapport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark, p. 81.Google Scholar
  62. Sverdrup, H. U. and Warfvinge, P. G.: 1988b, in J. Nilsson and P. Grennfelt (eds.), Critical Loads for Sulphur and Nitrogen, Miljorapport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark, p. 131.Google Scholar
  63. Tietema, A. and Verstraten, J. M.: 1989, The Nitrogen Budget of an Oak-beech Forest Ecosystem in the Netherlands in Relation to Atmospheric Deposition, Dutch Priority Programme on Acidification, Report 04-01.Google Scholar
  64. Ulrich, B.: 1981a, Z Pflanzenerndhr. Bodenk. 144, 647.Google Scholar
  65. Ulrich, B.: 1981b, Z. Pflanzenerndhr. Bodenk. 144, 289.Google Scholar
  66. Ulrich, B.: 1983, in B. Ulrich and J. Pankrath (eds.), Effects of Accumulation of Air Pollutants in Forest Ecosystems, Kluwer Acad. Publ., Dordrecht, p. 127.Google Scholar
  67. Ulrich, B. and Matzner, E.: 1983, Abiotische Folgewirkungen der weitrdumigen Ausbreitung von Luftverunreinigungen, Umweltforschungsplan der Bundesminister des Inneren, Forschungsbericht 10402615, BRD.Google Scholar
  68. Van Breemen, N., Driscoll, C. T., and Mulder, J.: 1984, Nature 307, 599.Google Scholar
  69. Van Breemen, N., de Visser, P. H. B., and Van Grinsven, J. J. M.: 1986, J. Geol. Soc. 143, 659.Google Scholar
  70. Van Miegroet, H. and Cole, D. W.: 1984, J. Environ. Qual. 13, 586.Google Scholar
  71. Wright, R. F. and Henriksen, A.: 1983, Nature 305, 422.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • W. De Vries
    • 1
  • M. Posch
    • 2
  • J. Kämäri
    • 3
  1. 1.The Winand Staring Centre for Integrated Land, Soil and Water ResearchAC WageningenThe Netherlands
  2. 2.International Institute for Applied Systems AnalysisLaxenburgAustria
  3. 3.Water and Environment Research InstituteHelsinkiFinland

Personalised recommendations