Water, Air, and Soil Pollution

, Volume 59, Issue 1–2, pp 107–123 | Cite as

Hydrologic pathways and chemical composition of runoff during snowmelt in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA

  • A. Scott Denning
  • Jill Baron
  • M. Alisa Mast
  • Mary Arthur
Regular Section

Abstract

Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, P. W., Tranter, M., Davies, T., and Blackwood, I. L.: 1988, Water, Air, and Soil Pollut. 43, 231.Google Scholar
  2. Arthur, M. A.: 1990, ‘The Effects of Vegetation on Watershed Biogeochemistry at Loch Vale Watershed, Rocky Mountain National Park, Colorado’, Ph. D. Dissertation, Cornell University, Ithaca, NY.Google Scholar
  3. Backes, C. A. and Tipping, E.: 1987, Water Resour. Res. 21, 221.Google Scholar
  4. Baron, J. and Bricker, O. P.: 1987, ‘Hydrologic and Chemical flux in Loch Vale Watershed, Rocky Mountain National Park’, in R.C. Averett and D. McKnight (eds.), Chemical Quality of Water and the Hydrologic Cycle, Lewis Publishers. Ann Arbor, MI, pp. 141–156.Google Scholar
  5. Baron, J. and Walthall, P. M.: 1985, ‘The Nature of Precipitation, Soil, and Surface-Water Chemistry in a Subalpine Ecosystem’, in D. E. Caldwell, J. A. Brierley, and C. I. Brierley (eds.), Planetary Ecology, Van Nostrand Reinhold Co., Inc., New York, NY, pp. 497–508.Google Scholar
  6. Bergmann, M. A. and Welch, H. E.: 1985, Can. J. Fish. Aquat. Sci. 42, 1784.Google Scholar
  7. Bobba, A. G. and Lam, D. C. L.: 1988, Can. J. Fish. Aquat. Sci. 45, 81.Google Scholar
  8. Bobba, A. G. and Lam, D. C. L.: 1989, Water, Air, and Soil Pollut. 46, 261.Google Scholar
  9. Cadle, S. H., Dasch, J. M., and Grossnickle, N. E.: 1984, Water, Air, and Soil Pollut. 22, 303.Google Scholar
  10. Cole, C. J.: 1977, ‘Geology of East-Central Rocky Mountain National Park and Vicinity, with Emphasis on the Emplacement of the Precambrian Silver Plume Granite in the Longs Peak-St. Vrain Batholith’, Ph.D. Dissertation, Univ. Colorado, Boulder. 344 pp.Google Scholar
  11. Drever, J. I.: 1988, The Geochemistry of Natural Waters, 2nd Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar
  12. Driscoll, C. T.: 1985, Env. Health Perspective 63, 93.Google Scholar
  13. Fishman. M. J., and Friedman, L. C.: 1985, ‘Methods for Determination of Inorganic Substances in Water and Fluvial Sediments’, in Techniques of Water Resources Investigations of the U.S. Geological Survey, Book 5, Ch. A6, U.S. Government Printing Office, Washington, DC.Google Scholar
  14. Haines, T. A.: 1981, Trans. Am. Fish. Soc., 110, 669.Google Scholar
  15. Harte, J. and Hoffman, E.: 1989, Conserv. Biol. 3, 149.Google Scholar
  16. Jeffries, D., Cox, C., and Dillon, P.: 1979, J. Fish. Res. Bd. Canada 36, 640.Google Scholar
  17. Johannessen, M. and Henriksen, A.: 1978, Water Resour. Res. 14, 615.Google Scholar
  18. Johannessen, M. Skartveit, A., and Wright, R. F.: 1980, in D. Drablos and A. Tollen (eds.), Proc. Int. Conf. Ecol. Impact Acid Precip, SNSF Project, Oslo, pp. 224–225.Google Scholar
  19. Lam, D. C. L., Boregowda, S., Bobba, A. G. Jeffries, D. S., and Patry, G. G.: 1986, Water, Air, and Soil Pollut. 31, 149.Google Scholar
  20. Landers, D. H., Eilers, J. M., Brakke, D. F., Overton, W. S., Kellar, P. E., Silverstein, M. E., Schonbrod, R. D., Crowe, R. E., Linthurst, R. A., Omernik, J. M., Teague, S. A., and Meier, E. P.: 1987, Characteristics of lakes in the Western United States, Vol. I: Population Descriptions and Physico-Chemical Relationships, EPA-600/3-86/054a, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  21. Lawrence, G. B., Fuller, R. D., and Driscoll, C. T.: 1986, Biogeochemistry 2, 115.Google Scholar
  22. Litaor, M. I.: 1988, Water Resour. Res. 24, 727.Google Scholar
  23. Marsh, P., and Woo, M.: 1984, Water. Resour. Res. 20, 1853.Google Scholar
  24. Mast, M. A.: 1989, ‘A Laboratory and Field Study of Chemical Weathering with Special Reference to Acid Deposition’, Ph.D Dissertation, Department of Geology and Geophysics, University of Wyoming, Laramie, WY, 174 pp.Google Scholar
  25. Mast, M. S., Drever, J. I., and Baron, J.: 1990, Water Resour. Res. 26, 2971.Google Scholar
  26. NADP/NTN National Atmospheric Deposition Program/National Trends Network: 1989. NADP/NTN Coordination Office, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO.Google Scholar
  27. Peden, M. E.: 1986, Methods of Collection and Analysis of Wet Deposition, Illinois State Water Survey, Report No. 381, Champaign, IL.Google Scholar
  28. Pierson, D. C. and Taylor, C. H.: 1985, J. Glaciology 31, 190.Google Scholar
  29. Plankey, B. J. and Patterson, H. H.: 1987, Environ. Sci. Technol. 21, 595.Google Scholar
  30. Schaffer, K. A., Fritton, D. D., and Baker, D. E.: 1979, J. Environ. Qual. 8, 241.Google Scholar
  31. Schofield, C. L., Galloway, J. N., and Hendrey, G. R.: 1985, Water, Air, and Soil Pollut. 26, 403.Google Scholar
  32. Semkin, R. G., and Jeffries, D. S.: 1988, Can. J. Fish. Aquat. Sci. 45, 38.Google Scholar
  33. Stein, J., Jones, H. G., Roberge, J., and Sochanska, W.: 1986, ‘The Prediction of both Runoff Quality and Quantity by the Use of an Integrated Snowmelt Model’, in E. M. Morris (ed.), Modelling Snowmelt-Induced Processes, IAHS Publication No. 155, pp. 358–374.Google Scholar
  34. Stoddard, J.: 1987, Limnol. Oceanogr. 32, 825.Google Scholar
  35. Stottlemyer, R.: 1987, Can. Fish. Aquat. Sci. 44, 1812.Google Scholar
  36. Turk, J. T. and Spahr, N. E.: 1991, Rocky Mountains: Controls on Lake Chemistry', in D. Charles (ed.), Acid Deposition and Aquatic Ecosystems, Springer-Verlag, New York.Google Scholar
  37. Vertucci, F. A.: 1990 ‘Methods for Detecting and Quantifying Lake Acidification’, Proceedings of the International Mountain Watershed Symposium, Subalpine Processes and Water Quality, in I. G. Popoff, C. R. Goldman, S. L. Loeb, and L. B. Leopold (eds.), Tahoe Resource Conservation District, P.O. Box 10529, South Lake Tahoe, CA.Google Scholar
  38. Walthall, P. M.: 1985, ‘Acidic Deposition and the Soil Environment of Loch Vale Watershed in Rocky Mountain National Park’, Ph.D. Dissertation, Department of Agronomy, Colorado State University. 148 pp.Google Scholar
  39. Wang, D.: 1984, ‘Fire and Nutrient Dynamics in a Pine-Oak Forest Ecosystem in the New Jersey Pine Barrens’, Ph.D. Dissertation, Yale University, New Haven, CT.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • A. Scott Denning
    • 1
  • Jill Baron
    • 1
    • 2
  • M. Alisa Mast
    • 3
  • Mary Arthur
    • 4
  1. 1.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsU.S.A.
  2. 2.National park Service, Water Resources DivisionFort CollinsU.S.A.
  3. 3.United States Geologic SurveyRestonU.S.A.
  4. 4.Cornell UniversityIthacaU.S.A.

Personalised recommendations