Advertisement

Water, Air, and Soil Pollution

, Volume 57, Issue 1, pp 23–30 | Cite as

Uptake of selenium by freshwater phytoplankton

  • Gerhardt F. Riedel
  • Dorothea P. Ferrier
  • James G. Sanders
Part I Metals of Worldwide Interest

Abstract

The uptake of three forms of Se, selenate, selenite and selenomethionine, was examined in three species of freshwater algae, Anabaenaflos-aquae (Cyanophyceae), Chlamydomonasreinhardtii (Chlorophyceae), and Cyclotellameneghiania (Bacillariophyceae) in a defined medium using radiotracers at Se concentrations representative of contaminated systems. Based on the relative accumulation by live vs. heat-killed cells, and linear accumulation through time, selenate accumulation by all three species appears to be a physiological process. However, selenite accumulation at these concentrations appears to be due largely to sorption rather than active uptake, as shown by rapid initial accumulation and the fact that accumulation by heat-killed cells was nearly equal to that of dead cells. Both selenate and selenite uptake rates increased linearly with concentration over the range of 1 to 50 µg L−1. Selenomethionine uptake is a biological process with saturable uptake kinetics (Ks ranging from about 2 to 30 µg L−1 Se), with much greater uptake rates than the other two forms, and little inactive sorbtion to heat-killed cells.

Keywords

Phytoplankton Selenium Selenate Uptake Rate Selenite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andren, A.W., Klein, D.H., and Talmi, Y.: 1975, Environ. Sci. Technol. 9, 856.Google Scholar
  2. Atlas, R.M. and Bartha, R.: 1981, Microbial Ecology: Fundamentals and Applications. Addison-Wesley, Inc. Reading, MA 560 pp.Google Scholar
  3. Besser, J.M., Huckins, J.N., Little, E.E., and La Point, J.W.: 1989, Environ. Pollut. 62, 1.Google Scholar
  4. Cooke, T.D. and Bruland, K.W.: 1987, Environ. Sci. Technol. 21, 1214.Google Scholar
  5. Cumbie, P.M. and Van Horn, S.L.: 1978, Proc. Ann. Conf. S.E. Assoc. Fish Wild. Agencies 32, 612.Google Scholar
  6. Cutter, G.A.: 1989. ‘Freshwater systems’. In: Occurrence and Distribution of Selenium, CRC Press, Inc. Boca Raton, FL pp. 243–262.Google Scholar
  7. Cutter, G.A. and Bruland, K.W.: 1984, Limnol. Oceanogr. 29, 1179.Google Scholar
  8. Flynn, K.J. and Butler, I.: 1986, Mar. Ecol. Prog. Ser. 34, 281.Google Scholar
  9. Foe, C. and Knight, A.W.: 1986, ‘Selenium bioaccumulation, regulation, and toxicity in the green alga, Selenastrum capricornutum, and dietary toxicity of contaminated alga to Daphnia magna’. In: J. Slocum (ed.), Selenium in the Environment. California State University, Fresno. pp. 77–88.Google Scholar
  10. Furr, A.K., Parkinson, T.F., Hinrichs, R.A., Van Campen, D.R., Bache, C.A., Gutenmann, W.H., St. John, L.E. Jr, Pakkala, I.S., and Lisk, D.J.: 1977, Environ. Sci. Technol. 11, 1194.Google Scholar
  11. Gissel-Nielsen, G. and Gissel-Nielsen, M.: 1973, Ambio 2, 114.Google Scholar
  12. Guillard, R.R.L.: 1973, ‘Division rates’. In: J. Stein, (ed.), Handbook of Phycological Methods. Cambridge University Press, London. pp. 289–311.Google Scholar
  13. Guillard, R.R.L. and Lorenzen, C.J.: 1972, J. Phycol. 8, 10.Google Scholar
  14. Hobbie, J.E., Daley, R.J., and Jaspar, S.: 1977, App. Environ. Microbiol. 33, 1225.Google Scholar
  15. Hudman, J.F. and Glenn, A.R.: 1984, Arch. Microbiol. 140, 252.Google Scholar
  16. Hudson, R.J.M and Morel, F.M.M.: 1989, Limnol. Oceanogr. 34, 1113.Google Scholar
  17. Ishimaru, T., Takeguchi, T., Fukuyo, Y., and Kodama, M.: 1989, ‘The selenium requirement of Gymnodinium nagasakiense’. In: T. Okaichi, D.M. Anderson and T. Nemoto (eds.), Red Tides: Biology. Environmental Science and Toxicology, Elsevier Science, New York, pp. 357–360.Google Scholar
  18. Karlson, U. and Frankenberger, Jr., W.T.: 1988, Soil Sci. Soc. Am. J. 52, 678.Google Scholar
  19. Kiffney, P. and Knight, A.: 1990, Arch. Environ. Contam. Toxicol. 19, 488.Google Scholar
  20. Lindstrom, K.: 1980, Arch. Hydrobiol. 82, 110.Google Scholar
  21. Lindstrom, K.: 1983, Hydrobiologia 101, 35.Google Scholar
  22. Lindstrom, K. and Rodhe, W.: 1978, Mitt. Int. Ver. Theor. Angew. Limnol. 21, 168.Google Scholar
  23. Marshall, E.: 1985, Science 229, 144.Google Scholar
  24. Parekh, P.P. and Husain, L.: 1981, Atmos. Environ. 15, 1717.Google Scholar
  25. Pintner, I.J., and Provasoli, L.: 1968, Bull. Misaki. Mar. Biol. Kyoto Univ. 12, 25.Google Scholar
  26. Porcella, D.B., Bowie, G.L, Sanders, J.G., and Cutter, G.A.: 1990, Water Air Soil Poll. This Volume.Google Scholar
  27. Price, N.M. and Harrison, P.J.: 1988, Plant Phy siol. 86, 192.Google Scholar
  28. Price, N.M., Thompson, P.A., and Harrison P.J.: 1987, J. Phycol. 23, 1.Google Scholar
  29. Raven, J.A.: 1980, Adv. Microb. Physiol. 21, 47.Google Scholar
  30. Sandholm, M., Oksanen, H.E., and Pesonen, L.: 1973, Limnol. Oceanoyr. 18, 496.Google Scholar
  31. Schrift, A.: 1954, Am. J. Bot. 41, 223.Google Scholar
  32. Sorenson, E.M., Baver, B.T.L., Bell, J.S., and Harlan, C.W.: 1982, Bull. Environm. Contam. Toxicol. 29, 688.Google Scholar
  33. Vandermeulen, J.H. and Foda, A.: 1988, Mar. Biol. 98, 115.Google Scholar
  34. Wheeler, A.E., Zingaro, R.A., and Irgolic, K.: 1982, J. Exp. Mar. Biol. Ecol. 57, 181.Google Scholar
  35. Wehr, J.D. and Brown, L.: 1985, Can. J. Fish. Aquat. Sci. 42, 1783.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Gerhardt F. Riedel
    • 1
  • Dorothea P. Ferrier
    • 1
  • James G. Sanders
    • 1
  1. 1.Benedict Estuarine Research LaboratoryAcademy of Natural SciencesBenedictUSA

Personalised recommendations