Molecular and General Genetics MGG

, Volume 244, Issue 6, pp 622–629 | Cite as

Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KINLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase

  • Tiziana Lodi
  • David O'Connor
  • Paola Goffrini
  • Iliana Ferrero
Original Paper


In the “petite-negative” yeast Kluyveromyces lactis carbon catabolite repression of some cytoplasmic enzymes has been observed. However, with respect to mitochondrial enzymes, in K. lactis, unlike the case in the “petite-positive” yeast Saccharomyces cerevisiae, growth on fermentable carbon sources does not cause repression of respiratory enzymes. In this paper data are reported on carbon catabolite repression of mitochondrial enzymes in K. lactis, in particular on l- and d-lactate ferricytochrome c oxidoreductase (LCR). The l- and d-LCR (E.C. 1123, E.C. 1124) in yeast catalyze the stereospecific oxidation of d and l isomers of lactate to pyruvate. This pathway is linked to the respiratory chain, cytochrome c being the electron acceptor of the redox reaction. We demonstrate that the level of mitochondrial d- and l-LCR is controlled by the carbon source, being induced by the substrate lactate and catabolite-repressed by glucose. We cloned the structural gene for d-LCR of K. lactis (KlDLD), by complementation of growth on d,l-lactate in the S. cerevisiae strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. From the sequence analysis an open reading frame was identified that could encode a polypeptide of 579 amino acids, corresponding to a calculated molecular weight of 63 484 Da. Analysis of mRNA expression indicated that glucose repression and induction by lactate are exerted at the transcriptional level.

Key words

Kluyveromyces lactis Catabolite repression Mitochondrial enzyme Lactate dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031Google Scholar
  2. Bianchi MM, Falcone C, Chen XJ, Wésolowski-Louvel M, Frontali L, Fukuhara H (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pkD1. Curr Genet 12:185–192Google Scholar
  3. Bonneaud N, Ozier-Kalogeropoulos O, Li G, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E.coli shuttle vectors. Yeast 7:609–615Google Scholar
  4. Breunig KD (1989) Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol Gen Genet 216:422–427Google Scholar
  5. Bulder CJEA (1964) Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie van Leeuwenhoek 30:1–9Google Scholar
  6. Casabadan MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol 100:293–308Google Scholar
  7. DeDeken RH (1966) The crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156Google Scholar
  8. De Louvencourt L, Fukuhara H, Heslot H, Wésolowski M (1983) Transformation of Kluyveromyces lactis by killer plasmid DNA. J Bacteriol 154:737–742Google Scholar
  9. Ferrero I, Rossi C, Landini MP, Puglisi PP (1978) Role of the mitochondrial protein synthesis in the catabolite repression of the petite-negative yeast Kluyveromyces lactis. Biochem Biophys Res Commun 80:340–348Google Scholar
  10. Ferrero I, Viola AM, Goffeau A (1981) Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis. Antonie van Leeuwenhoek 47:11–24Google Scholar
  11. Galzy P, Slonimski, PP (1957) Variations physiologiques de la levure an cours de la croissance sur l'acide lactique comme seule source de carbone. CR Acad Sci 245:2423–2426Google Scholar
  12. Gancedo JM (1992) Carbon catabolite repression in yeast. Eur J Biochem 206:297–313Google Scholar
  13. Gasser SM, Ohashi A, Daum G, Bohni PC, Gibson J, Reid GA, Yonetani T, Schatz G (1982) Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc Natl Acad Sci USA 79:267–271Google Scholar
  14. Glick BS, Brandt A, Cunnigham K, Müller S, Hallberg RL, Schatz G (1992) Cytochrome c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–822Google Scholar
  15. Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol Gen Genet 228:401–409Google Scholar
  16. Gregolin C, Singer TP (1962) Zinc-FAD prosthetic groups of d-lactate cytochrome reductase. Biochim Biophys Acta 57:410–412Google Scholar
  17. Gregolin C, Singer TP (1963) The lactic dehydrogenase of yeast. III. d(−) lactic cytochrome c reductase, a zinc-flavoprotein from aerobic yeast. Biochim Biophys Acta 67:201–218Google Scholar
  18. Guiard B, Lederer F (1976) Baker's yeast flavocytochrome b2 (l-(+)-lactate dehydrogenase). Eur J Biochem 65:537–542Google Scholar
  19. Ito H, Fukada Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168Google Scholar
  20. Jacq C, Lederer F (1974) Cytochrome b2 from baker's yeast (l-lactate dehydrogenase) a double-headed enzyme. Eur J Biochem 41:311–320Google Scholar
  21. Koll H, Guiard B, Rassow J, Ostermann J, Horwich AL, Neupert W, Hartl F (1992) Antifolding activity of hsp20 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 68:1163–1175Google Scholar
  22. Kuzhandaivelu N, Jones WK, Martin AK, Dickson RC (1992) The signal for glucose repression of the lactose-galactose regulon is amplified through subtle modulation of transcription of the Kluyveromyces lactis KlGAL4 activator gene. Mol Cell Biol 12:1924–1931Google Scholar
  23. Labeyrie F, Slonimski PP (1964) Mode d'action des lacticodeshydrogènases lièes aux systemes flavinique et cytochromique. Bull Soc Chim Biol 44:1793–1828Google Scholar
  24. Lederer F, Cortial S, Becam AM, Haumont PY, Perez L (1985) Complete amino acid sequence of flavocytochrome b2 from baker's yeast. Eur J Biochem 152:419–428Google Scholar
  25. Lloyd AT, Sharp PM, (1993) Synonymous codon usage in Kluyveromyces lactis. Yeast 9:1219–1228Google Scholar
  26. Lodi T, Viola AM, Rossi C, Ferrero I (1985) Antimycin A- and hydroxamate-insensitive respiration in yeasts. Antonie van Leeuwenhoek 51:57–64Google Scholar
  27. Lodi T, Ferrero I (1993) Isolation of DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme d-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 238:315–324Google Scholar
  28. Lodi T, Guiard B (1991) Complex transcriptional regulation of the S. cerevisiae CYB2 gene encoding cytochrome b2. CYP1 (HAPI) activator binds to the CYB2 upstream activation site UASI-B2. Mol Cell Biol 11:3762–3772Google Scholar
  29. Luani D, Lodi T, Ferrero I (1994) Genes coding for mitochondrial proteins are more strongly biased in Kluyveromyces lactis than in Saccharomyces cerevisiae. Curr Genet, 26:91–93.Google Scholar
  30. Magasanik B (1961) Catabolite repression. Cold Spring Harbor Symp Quant Biol 26:249–256Google Scholar
  31. Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J. Mol Biol 53:159–162Google Scholar
  32. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  33. Nasmyth KA, Reed SI (1980) Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Aca Sci 77:2119–2123Google Scholar
  34. Nygaard AP (1961) d-lactic cytochrome c reductase a flavoprotein from yeast. J Biol Chem 236:1585–1593Google Scholar
  35. Pfanner N, Hard FU, Neupert W (1988) Import of proteins into mitochondria: a multi-step process. Eur J Biochem 175:205–212Google Scholar
  36. Roise D, Horvath SJ, Tomich JM, Richards JH, Shatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–1334Google Scholar
  37. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211Google Scholar
  38. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  39. Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  40. Slonimski PP (1953) Formation des enzymes respiratoires chez la levure. Masson et Cie Editeurs, ParisGoogle Scholar
  41. Somlo M (1965) Induction des lactico-cytochrome c reductases (d- et l-) de la levure aérobic par des lactates (d- et l-). Biochim Biophys Acta 97:183–201Google Scholar
  42. Somlo M (1966) Présence et régulation de la synthèse de la d-LDH chez la levure aérobic. Bull Soc Chim Biol 48:247–276Google Scholar
  43. Somlo M (1967) Etude physiologique des trois lacticodeshydrogénases de la levure. Thèse d'Etat, ParisGoogle Scholar
  44. von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342Google Scholar
  45. Wesolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4:71–81Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Tiziana Lodi
    • 1
  • David O'Connor
    • 1
  • Paola Goffrini
    • 1
  • Iliana Ferrero
    • 1
  1. 1.Institute of GeneticsUniversity of ParmaParmaItaly

Personalised recommendations