Water, Air, and Soil Pollution

, Volume 90, Issue 3–4, pp 375–405

Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic versus minerotrophic peat bog profiles, Jura Mountains, Switzerland

  • William Shotyk
Article

Abstract

Peat cores were taken from two contrasting Sphagnum bogs in the Jura Mountains of Switzerland. At Etang de la Gruyere (EGr), 6.5 m of peat has accumulated during the past 10,000 years. In the first 100 cm of this profile there are several distinct peaks in ash content, but the values are well within the range for typical ombrotrophic Sphagnum bogs. There is also considerable variation in the concentrations of major and trace lithogenic metals (Al, Ti, Sc, Ca, Mg, Rb, and Sr), but most of this is simply a reflection of the natural variations in the amount of mineral matter in the peats. The Ca/Mg molar ratios in the peats at EGr are comparable to or lower than the average rainwater composition in this area, showing that this section of the peat core is ombrotrophic (i.e. rainwater-fed). In other words, the inorganic constituents in the surface peats at EGr were supplied exclusively by atmospheric deposition. This peat core, therefore, is suitable for studying the historical record of atmospheric metal deposition. Arsenic, Cu, Pb, Sb, and Zn are all more abundant in surface and near surface peat layers compared to deeper parts of the profile. Enrichment factors (EFs) for the profile were calculated conservatively by normalizing the metal/Sc ratios of individual peat samples to the average of the five lowest metal/Sc ratios in this part of the core (69–84 cm); these are tentatively assumed to represent pre-Industrial background values. The maximum EFs are approximately 5 times for Cu, 15 times for As, and 30 to 50 times for Pb, Sb, and Zn.

At La Tourbière des Genevez (TGe), 1.5 m of peat represents 4,800 years of peat formation. At this site, the ash contents are higher and increase progressively with depth to values which are characteristic of minerotrophic fen peats. The concentration profiles of Al, Ti, Sc, Ca, Mg, Rb, Sr show the same general trend. The Ca/Mg molar ratios of these peats are generally twice the rainwater average, showing that this bog is essentially minerotrophic (ie groundwater-fed). Thus, the inorganic cccstituents in these peats were provided by both atmospheric and hydrospheric processes. Despite this, the Cu, Pb, Sb, and Zn concentrations are generally very similar to those at EGr, especially in the uppermost part of the profile, indicating that recent atmospheric inputs also dominate the supply of these metals to this bog. However, the minimum Pb and Sb concentrations in this profile are approximately five times higher than the corresponding values at EGr. The minerotrophic profile at TGT, therefore, could not by itself be used to calculate rates of atmospheric Pb and Sb deposition because it is impossible to distinguish between atmospheric and hydrospheric metal inputs.

At TGe, As concentrations increase continuously with depth, reaching concentrations in the deeper, older peats which are more than 50 times higher than the ‘background’ As values at EGr. At this site the natural supply of As by mineral soil water completely masks the recent, elevated inputs contributed by atmospheric deposition. Thus, the peat core from TGe is also unsuitable for studying atmospheric As deposition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaby, B., and Jacobsen, J.: 1979, Damn. Geol. Unders., Årbog 1978, 5.Google Scholar
  2. Aaby, B., Jacobsen, J., and Jacobsen, O.S.: 1979, Damn. Geol. Unders., Årbog 1978, 45.Google Scholar
  3. Assarsson, G.: 1961, Sver Geol. Unders., Årbog 55, 1.Google Scholar
  4. Baes, C. F., and Mesmer, R. E.: 1976, The Hydrolysis of Cations, Wiley Interscience, New York.Google Scholar
  5. Belyea, L. R., and Warner, B. G.: 1994, Boreas 23, 259.Google Scholar
  6. Bludau, W., and Görres, M.: 1993, Telma 23, 213.Google Scholar
  7. Boutron, C.: 1986, ‘Atmospheric toxic metals and metalloids in the snow and ice layers deposited in Greenland and Antarctica from prehistoric times to present’, in J. O. Nriagu and D. I. Davidson (eds.), Toxic Metals in the Atmosphere, pp. 467–505. John Wiley and Sons, New York.Google Scholar
  8. Boutron, C., Patterson, C. C., and Barkov, N. I.: 1990, Earth Planet. Sci. Lett. 101, 248.Google Scholar
  9. Boutron, C., Görlach, U., Candelone, J-P., Bolshov, M. A., and Delmas, R. J.: 1991, Nature 353, 153.Google Scholar
  10. Boutron, C., Candelone, J-P, and Görlach, U.: 1992, Analusis 20, M24.Google Scholar
  11. Bowen, H. J. M.: 1979, Environmental Chemistry of the Elements, Academic Press, New York.Google Scholar
  12. Chapman, S. B.: 1964, J. Ecol. 52, 315.Google Scholar
  13. Cheburkin, A. K., Andreyev, A. V., and Shotyk, W.: 1995, Chem. Geol. (in review).Google Scholar
  14. Clymo, R. A.: 1987, Sci. Prog. (Oxford) 71, 593.Google Scholar
  15. Clymo, R. S., Oldfield, F., Appleby, P. G., Pearson, G. W., Ratnesar, P., and Richardson, N.: 1990, Phil. Trans. R. Soc. London B327, 331.Google Scholar
  16. Damman, A. W. H.: 1978, Oikos 30, 480.Google Scholar
  17. Damman, A. W. H.: 1986, Can. J. Bot. 64, 384.Google Scholar
  18. Damman, A. W. H.: 1987, Proc. Symp. Wetlands and Peatlands, Int. Peat Soc., Edmonton, pp. 85–93.Google Scholar
  19. Damman, A. W. H., Tolonen, K., and Sallantaus, T.: 1992, Suo 43, 137.Google Scholar
  20. Dugmore, A.: 1989, Scottish Geogr Mag. 105, 168.Google Scholar
  21. El-Daoushy, F., Tolonen, K., and Rosenberg, R.: 1982, Nature 296, 429.Google Scholar
  22. Faure, G.: 1991, Principles and Applications of Inorganic Geochemistry, Macmillan, New York.Google Scholar
  23. Feustel, I. C., and Byers, H. G.: 1930, U.S.D.A. Tech. Bull. 214, 26.Google Scholar
  24. Gerber, E. M.: 1990, ‘Die Torfmoore des nördlichen Faltenjuras in ihrem morpho-strukturalen Zusammenhang’ (in German), in UKPIK No. 7, pp. 31–44. Geographical Institute, University of Fribourg, Switzerland.Google Scholar
  25. Glooschenko, W. A.: 1986, ‘Monitoring the atmospheric deposition of metals by use of bog vegetation and peat profiles’, in J. O. Nriagu and D. I. Davidson (eds.), Toxic Metals in the Atmosphere, pp. 508–533. John Wiley and Sons, New York.Google Scholar
  26. Glooschenko, W. A., Holloway, L., and Arafat, N.: 1986, Aquat. Bot. 25, 179.Google Scholar
  27. Gorham, E., and Tilton, D. L.: 1978, Can. J. Bot. 56, 2755.Google Scholar
  28. Görres, M.: 1992, Hohenheimer Umwelttagung 24, 173.Google Scholar
  29. Görres, M., and Bludau, W.: 1992, Telma 22, 123.Google Scholar
  30. Görres, M., and Frenzel, B.: 1993, Naturwissen. 80, 333.Google Scholar
  31. Grünig, A., Vetterli, L., and Wildi, O.: 1984, Inventar der Hoch- and Übergangsmoore der Schweiz (in German). Swiss Federal Institute for Forestry Research, Birmensdorf.Google Scholar
  32. Gulens, J., Champ, D. R., and Jackson, R. E.: 1979, ‘Influence of redox environments on the mobility of arsenic in ground water’, in E. A. Jenne (ed.), Chemical Modeling in Aqueous Systems, pp. 81–95. American Chemical Society, Symposium Series 93, Washington.Google Scholar
  33. Hill, B. M., and Siegel, D.I.: 1991, J. Hydrol. 123, 211.Google Scholar
  34. Hölzer, A., and Hölzer, A.: 1987, Carolinea 45, 43.Google Scholar
  35. Hölzer, A., and Hölzer, A.: 1988a, Carolinea 46, 23.Google Scholar
  36. Hölzer, A., and Hölzer, A.: 1988b, Telma 18, 157.Google Scholar
  37. Hong, S., Candelone, J.-P., Patterson, C. C., and Boutron, C. F.: 1994, Science 265, 1841.Google Scholar
  38. Hvatum, O. O.: 1971, Tekn. Uke. 118, 40.Google Scholar
  39. Hvatum, O. O.: 1972, Symposium om Tungmetallforurensninger, Ås, Norway, pp. 59–70Google Scholar
  40. Hvatum, O. O., Bolviken, B., and Steinnes, E.: 1983, Ecol. Bull. (Stockholm) 35, 351.Google Scholar
  41. Joray, M.: 1942, L'Etang de la Gruyère, Jura Bernois. Etude Pollenanalytique et Stratigraphique de la Tourbière (in French). Matériaux pour le Levé Géobotanique de la Suisse. Fascicule 25. Commission phytogéographige de la Société helvétique des Sciences naturelles. Hans Huber, Berne, p. 117.Google Scholar
  42. Kalcher, K., Kosmus, W., and Pietsch, R.: 1983, Telma 13, 173.Google Scholar
  43. Kosmus, W., Kalcher, K., and Pietsch, R.: 1983, in Int. Conf Heavy Metals in the Environment, Vol. 2, Heidelberg, 1983. CEP Consultants, Edinburgh, pp. 864–867.Google Scholar
  44. Kotilainen, M. J.: 1927, ‘Untersuchungen über die Beziehungen zwischen der Pflanzendecke der Moore und der Beschaffenheit, besonders der Reaktion des Torfbodens’ (in German). Suomen Suoviljelysyhidstys, Tieteellisia Julkaisuja 7, p. 219.Google Scholar
  45. Krauskopf, K. B.: 1979, Introduction to Geochemistry, 2nd ed., McGraw-Hill, New York.Google Scholar
  46. Kuhn, A., and Sigg, L.: 1993, Limnol. Oceanogr 38, 1052.Google Scholar
  47. Léonard, A.: 1991, ‘Arsenic’, in E. Merian (ed.), Metals and Their Compounds in the Environment, pp. 751–774. VCH Publishers, Weinheim.Google Scholar
  48. Livett, E. A., Lee, J. A., and Tallis, J. H.: 1979, J. Ecol. 67, 865.Google Scholar
  49. Lötschert, W., and Wandtner, R.: 1982, Ber. Deutsch. Bot. Ges. 95, 341.Google Scholar
  50. Malmer, N.: 1992, ‘Processes of acquisition, transport and deposition of inorganic constituents in surface peat layers’, in O. M. Bragg, P. D. Hulme, H. A. P. Ingram, and R. A. Robertson (eds.), Peatland Ecosystems and Man: An Impact Assessment, pp. 165–174. Int. Peat Soc., Jyvdskyld.Google Scholar
  51. Malmer, N.: 1993, Adv. Bryol. 5, 223.Google Scholar
  52. Markert, B., and Thornton, I.: 1990, Water, Air, Soil Poll. 49, 113.Google Scholar
  53. Mattson, S., Sandberg, G., and Terning, P.-E.: 1944, Ann. Royal Agric. Coll. Sweden 12, 101.Google Scholar
  54. Menke, B.: 1987, Geologisches Jahrbuch A95, 3.Google Scholar
  55. Minkkinen, P., and Yliruokanen, I.: 1978, Kemia Kemi 5, 331.Google Scholar
  56. Moncure, G., Jankowski, P. A., and Drever, J. I.: 1992, ‘The hydrochemistry of arsenic in reservoir sediments, Milltown, Montana, USA’, in Y. K. Kharaka and A. S. Maest (eds.), Water-Rock Interactions, pp. 513–516. Balkema, Rotterdam.Google Scholar
  57. Mörnsjö, T.: 1968, Bot. Not. 121, 343.Google Scholar
  58. Naucke, W.: 1980, ‘Chemie von Moor and Torf’ (in German), in K. Göttlich (ed.), Moor and Torfkunde, pp. 173–195. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  59. Norton, S. A.: 1987, ‘The stratigraphic record of atmospheric loading of metals at the ombrotrophic Big Heath Bog, Mt. Desert Island, Maine, USA’, in T. C. Hutchinson and K. M. Meema (ed.), Effects of Atmospheric Pollutants on Forests, Wetlands, and Agricultural Ecosystems. NATO ASI Series, Vol. G16, pp. 561–576. Springer-Verlag, Berlin/Heidelberg.Google Scholar
  60. Norton, S. A., and Kahl, J. S.: 1986, ‘Atmospheric deposition of lead in lake sediments and peat’ in P. M. Stokes (ed.), Pathways, Cycling and Transformation of Lead in the Environment, pp. 97–132. Royal Society of Canada, Commission on Lead in the Environment, Ottawa, Canada.Google Scholar
  61. Norton, S. A., and Kahl, J. S.: 1987, ‘A comparison of lake sediments and ombrotrophic peat deposits as long-term monitors of atmospheric pollution’, in T. P. Boyle (ed.), New Approaches to Monitoring Aquatic Ecosystems, pp. 40–57. American Society of Testing and Materials, ASTM STP 940, Philadelphia.Google Scholar
  62. Norton, S. A., Dillon, P J., Evans, R. D., Mierle, G., and Kahl, J. S.: 1990, ‘The history of atmospheric deposition of Cd, Hg, and Pb in North America: evidence from lake and peat bog sediments’, in S. E. Lindberg, A. L. Page, and S. A. Norton (eds.), Sources, Deposition, and Canopy Interactions, Acidic Precipitation, Vol. 3, pp. 73–102. Springer-Verlag, Berlin and Heidelberg.Google Scholar
  63. Nriagu, J. O.: 1979, Nature 279, 409.Google Scholar
  64. Nriagu, J. O.: 1990, Environment 32, 7–11, 28.Google Scholar
  65. Nriagu, J. O., and Pacyna, J. M.: 1988, Nature 333, 134.Google Scholar
  66. Oeschger, H., and Langway, C. C. (eds.): 1989, The Environmental Record in Glaciers and Ice Sheets. Dahlem Konferenzen, Berlin. John Wiley and Sons, Chichester.Google Scholar
  67. Pakarinen, P., and Tolonen, K.: 1977a, Oikos 28, 69.Google Scholar
  68. Pakarinen, P., and Tolonen, K.: 1977b, Suo 28, 95.Google Scholar
  69. Pakarinen, P., and Tolonen, K.: 1978, Ann. Bot. Fennici 15, 287.Google Scholar
  70. Pakarinen, P., Tolonen, K., and Soveri, J.: 1981, in Proc. 6th Int. Peat Congr 1980, pp. 645–648.Google Scholar
  71. Pakarinen, P., Tolonen, K., Heikkinen, S., and Nurmi, A.: 1983, Ecol. Bull. (Stockholm) 35, 377.Google Scholar
  72. Pakarinen, P. and Gorham, G. ‘Mineral element composition of Sphagnum fuscum peats collected from Minnesota, Manitoba, and Ontario’ in C. H. Fuchsman and S. A. Spigarelli (eds.) Proc. Int'l. Symp. Peat Utilization, International Peat Society, Bemidji State University, pp. 417–429.Google Scholar
  73. Parker, D. R., Norvell, W A., and Chaney, R. L.: 1990, GEOCHEM-PC Version 2.0, Department of Soil and Environmental Sciences, University of California, Riverside.Google Scholar
  74. Persson, C.: 1971, Sver Geol. Unders., Årbog 65(2), 1.Google Scholar
  75. Reille, M.: 1991, Bull. Soc. Bot. France 138, 123.Google Scholar
  76. Renberg, I., Persson, M. W., and Emteryd, O.: 1994, Nature 368, 323.Google Scholar
  77. Robertson, F. N.: 1989, Environ. Geochem. Health 11, 171.Google Scholar
  78. Rosman, K. J. R., Chisholm, W., Boutron, C. F., Candelone, J.-P., and Görlach, U.: 1993, Nature 363, 333.Google Scholar
  79. Salmi, M.: 1969, Terra 81, 229.Google Scholar
  80. Sapek, A.: 1976, in Proc. 5th Int. Peat Congr, Vol. 2, pp. 285–294.Google Scholar
  81. Schaufelberger, F A.: 1994, ‘Arsenic minerals formed at low temperatures’, in J. O. Nriagu (ed.), Arsenic in the Environment, Part I: Cycling and Characterization, pp. 403–415. John Wiley and Sons, New York, 1994.Google Scholar
  82. Schell, W. R.: 1986, Environ. Sci. Technol. 20, 847.Google Scholar
  83. Schell, W. R., Sanchez, A. L., and Granlund, C.: 1986, Water, Air, Soil Pollut. 30, 393.Google Scholar
  84. Schell, W. R.: 1987, Int. J. Coal Geol. 8, 147.Google Scholar
  85. Schneider, S.: 1968, in Proc. 2nd Int. Peat Congr, Vol. 1, pp. 75–90.Google Scholar
  86. Schütz, L., and Rahn, K. A.: 1982, Atmos. Environ. 16, 171.Google Scholar
  87. Shotyk, W.: 1988, Earth-Sci. Rev. 25, 95.Google Scholar
  88. Shotyk, W.: 1992, ‘Organic soils’, in I. P. Martini and W. Chesworth (eds.), Weathering, Soils, and Paleosols, pp. 203–224. Elsevier, Amsterdam.Google Scholar
  89. Shotyk, W.: 1994a, ‘Natural and anthropogenic enrichments of arsenic through three Canadian ombrotrophic Sphagnum bog profiles’, in J. O. Nriagu (ed.), Arsenic in the Environment, Part I: Cycling and Characterization, pp. 381–401. John Wiley and Sons, New York.Google Scholar
  90. Shotyk, W.: 1994b, ‘The peat bog archives of global environmental change’ in A. K. Gupta and R. Kerrich (eds.) The Dynamic Earth pp. 30–50. Nat. Acad. Sci. Lett., India. Prof. W. S. Fyfe Felicitation Volume.Google Scholar
  91. Shotyk, W., and Steinmann, P.: 1994, Chem. Geol. 116, 137.Google Scholar
  92. Shotyk, W., Nesbitt, H. W., and Fyfe, W. S.: 1992, Int. J. Coal Geol. 20, 49.Google Scholar
  93. Sillanpää, M.: 1972, in Proc. 5th Int. Peat Congr, Vol. 5, pp. 185–191.Google Scholar
  94. Steinmann, P.: 1995, Mineral Weathering and Pore Water Genesis in Two Contrasting Sphagnum Bog Profiles, Jura Mountains, Switzerland. Ph.D. dissertation, Geological Institute, University of Berne.Google Scholar
  95. Steinmann, P., and Shotyk, W.: 1995a, J. Chromat. A 706, 281–286.Google Scholar
  96. Steinmann, P., and Shotyk, W.: 1995b, J. Chromat. A 706, 293–299.Google Scholar
  97. Steinmann, P., and Shotyk, W.: 1995c, J. Chromat. A 706, 287–292.Google Scholar
  98. Stumm, W., Wehrli, B., and Wieland, E.: 1987, Croat. Chem. Acta 60, 429.Google Scholar
  99. Tanskanen, H.: 1972, Suo 23, 63.Google Scholar
  100. Tanskanen, H.: 1977, Suo 28, 51.Google Scholar
  101. Tolonen, K.: 1984, Bull. Geol. Soc. Finland 56(Part 1–2), 207.Google Scholar
  102. Tolonen, K., and Oldfield, F.: 1986, Phys. Earth. Planet. Int. 42, 57.Google Scholar
  103. Tyler, G.: 1972, Ambio 1, 52.Google Scholar
  104. Urban, N. R., Eisenreich, S. J., Grigal, D.F., and Schurr, K. T.: 1990, Geochim. Cosmochim. Acta 54, 3329.Google Scholar
  105. Virtanen, K.: 1991, Geol. Surv. Finland, Spec. Paper 9, 241.Google Scholar
  106. Virtanen, K.: 1993, Bull. Geol. Surv. Finland 65(Part l), 41.Google Scholar
  107. Von Post, L., and Granlund, E.: 1925, Sveriges Geol. Undersok., Ser. C, No. 335. Arsbok 19, No. 2, Stockholm, Sweden, p. 127.Google Scholar
  108. Vuorela, L.: 1983, Bull. Geol. Soc. Finland 55, 25.Google Scholar
  109. Walton-Day, K., Filipek, L. H., and Papp, C. S. E.: 1990, Geochim. Cosmochim. Acta 54, 2933.Google Scholar
  110. Wardenaar, E. C. P.: 1987, Can. J. Bot. 65, 1772.Google Scholar
  111. Welten, M.: 1964, Mitt. Natur Gesell. Bern 21, 67.Google Scholar
  112. Zailer, V., and Wilk, L.: 1907, Z. f. Moorkultur Torf. 5, 197.Google Scholar
  113. Zoltai, S. C.: 1988, Water, Air, Soil Pollut. 37, 217.Google Scholar
  114. Zoltai, S. C.: 1989, Can. J. Earth Sci. 26, 207.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • William Shotyk
    • 1
  1. 1.Geological InstituteUniversity of BerneBerneSwitzerland

Personalised recommendations