Theoretical and Applied Genetics

, Volume 52, Issue 4, pp 145–157

Isozymes, plant population genetic structure and genetic conservation

  • A. H. D. Brown
Review

Summary

The exploration, conservation and use of the genetic resources of plants is a contemporary issue which requires a multidisciplinary approach. Here the role of population genetic data, particularly those derived from electrophoretic analysis of protein variation, is reviewed. Measures of the geographic structure of genetic variation are used to check on sampling theory. Current estimates justify the contention that alleles which have a highly localised distribution, yet are in high frequency in some neighbourhoods, represent a substantial fraction of the variation. This class, which is the most important class in the framing of sampling strategies, accounts for about 20–30% of variants found in 12 plant species. The importance of documenting possible coadapted complexes and gene-environment relationships is discussed. Furthermore, the genetic structure of natural populations of crop relatives might suggest the best structure to use in the breeding of crops for reduced vulnerability to pest and disease attack, or for adaptation to inferior environments. The studies reported to date show that whilst monomorphic natural populations do occur, particularly in inbreeding colonisers, or at the extreme margins of the distribution, polymorphism seems to be the more common mode. It is stressed here that the genetic resources of the wild relatives of crop plants should be systematically evaluated. These sources will supplement, and might even rival, the primitive land races in their effectiveness in breeding programmes. We may look forward to a wider application of gel electrophoresis in the evaluation of plant genetic resources because this technique is currently the best available for detecting genetic differences close to the DNA level on samples of reasonable size.

Key words

Allozymes Genetic diversity Sampling strategies Coadapted complexes Genetic resource evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Allard, R.W.: The mating system and microevolution. Genetics 79, (Suppl.) 115–126 (1975)Google Scholar
  2. Allard, R.W.; Babbel, G.R.; Clegg, M.T.; Kahler, A.L.: Evidence for coadaptation in Avena barbata. Proc. Nat. Acad. Sci. U.S.A. 69, 3043–3048 (1972)Google Scholar
  3. Allard, R.W.; Hansche, P.W.: Some parameters of population variability and their implications in plant breeding. Advan. Agron. 16, 281–335 (1964)Google Scholar
  4. Allard, R.W.; Kahler, A.L.; Weir, B.S.: Isozyme polymorphisms in barley populations. Barley Genetics 2, 1–13 (1971)Google Scholar
  5. Ashri, A.: Evaluation of the world collection of safflower, Carthamus tinctorius L. I. Reaction to several diseases and associations with morphological characters in Israel. Crop Sci. 11, 253–257 (1971)Google Scholar
  6. Babbel, G.R.; Selander, R.K.: Genetic variability in edaphically restricted and widespread plant species. Evolution 28, 619–630 (1974)Google Scholar
  7. Babbel, G.R.; Wain, R.P.: Genetic structure of Hordeum jubatum I. Outcrossing rates and heterozygosity levels. Can. J. Genet. Cyt. 19, 143–152 (1977)Google Scholar
  8. Bal, B.S.; Suneson, C.A.; Ramage, R.T.: Genetic shift during 30 generations of natural selection in barley. Agron. J. 51, 555–557 (1959)Google Scholar
  9. Bergman, F.: Adaptive acid phosphatase polymorphism in conifer seeds. Silvae Genetica 24, 175–177 (1975)Google Scholar
  10. Bradshaw, A.D.: Some of the evolutionary consequences of being a plant. Evol. Biol. 5, 25–46 (1972)Google Scholar
  11. Briggs, D.; Walters, S.M.: Plant variation and evolution. London: Weidenfeld and Nicolson 1969Google Scholar
  12. Brink, R.A.; Densmore, J.W.; Hill, G.A.: Soil deterioration and the growing world demand for food. Science 197, 625–630 (1977)Google Scholar
  13. Brock, R.D.: The role of induced mutations in plant improvement. Radiat. Bot. 11, 181–196 (1971)Google Scholar
  14. Broue, P.; Marshall, D.R.; Muller, W.J.: Biosystematics of subgenus Glycine (Verdc.): Isoenzymatic data. Aust. J. Bot. 25, 555–566 (1977)Google Scholar
  15. Brown, A.H.D.; Daniels, J.; Latter B.D.H.; Krishnamurthi, M.: Quantitative genetics of sugarcane III. Potential for sucrose selection in Saccharum spontaneum. Theoret. Appl. Genet. 39, 79–87 (1969)Google Scholar
  16. Brown, A.H.D.; Marshall, D.R.; Albrecht, L.: The maintenance of alcohol dehydrogenase polymorphism in Bromus mollis L., Aust. J. Biol. Sci. 27, 545–559 (1974)Google Scholar
  17. Brown, A.H.D.; Marshall, D.R.; Munday, J.: Adaptedness of variants at an alcohol dehydrogenase locus in Bromus mollis. Aust. J. Biol. Sci. 29, 389–396 (1976)Google Scholar
  18. Brown, A.; Nevo, E.; Zohary, D.: Association of alleles at esterase loci in wild barley Hordeum spontaneum. Nature 268, 430–431 (1977)Google Scholar
  19. Brown, A.H.D.; Nevo, E.; Zohary, D.; Dagan, O.: Genetic variation in natural populations of wild barley (Hordeum spontaneum). In preparation (1978)Google Scholar
  20. Cavalli-Sforza, L.L.; Bodmer, W.F.: The genetics of human populations. San Fransisco: Freeman 1971Google Scholar
  21. Clegg, M.T.: Patterns of genetic differentiation in natural populations of wild oats. Unpub. Ph.D. Thesis. Univ. of Calif. Davis (1969)Google Scholar
  22. Clegg, M.T.; Allard, R.W.: Patterns of genetic differentiation in the slender wild oat species Avena barbata. Proc. Nat. Acad. Sci. U.S.A. 69, 1820–1824 (1972)Google Scholar
  23. Clegg, M.T.; Allard, R.W.; Kahler, A.L.: Is the gene the unit of selection? Evidence from two experimental plant populations. Proc. Nat. Acad. Sci. U.S.A. 69, 2474–2478 (1972)Google Scholar
  24. Cullis, C.A.: Molecular aspects of the environmental induction of heritable changes in flax. Heredity 38, 129–154 (1977)Google Scholar
  25. Darwin, C: The Origin of Species. 6th edition. N.Y.: Collier 1872Google Scholar
  26. Day, P.R. (ed.): The genetic basis of epidemics in agriculture. Ann. N.Y. Acad. Sci. 287, 1–400 (1977)Google Scholar
  27. Dinoor, A.: Oat crown rust resistance in Israel. Ann. N.Y. Acad. Sci. 287, 357–366 (1977)Google Scholar
  28. Dobzhansky, Th.: Genetics of the Evolutionary Process. N.Y.: Columbia 1970Google Scholar
  29. Fedak, G.; Rajhathy, T.: Esterase isozymes in Canadian barley cultivars. Can. J. Plant Sci. 52, 507–516 (1972)Google Scholar
  30. Ford, E.B.: Ecological genetics. London: Chapman 1971Google Scholar
  31. Frankel, O.H.: Genetic conservation: Our evolutionary responsibility. Genetics 78, (Suppl.) 53–65 (1974)Google Scholar
  32. Frankel, O.H.: Genetic resources. Ann. N.Y. Acad. Sci. 287, 332–344 (1977)Google Scholar
  33. Frankel, O.H.: Bennett, E. (eds.): Genetic Resources in Plants — Their Exploration and Conservation. Oxford: Blackwell 1970Google Scholar
  34. Frankel, O.H.: Hawkes, J.G. (eds.): Crop genetic resources for today and tomorrow. Cambridge: C.U.P. 1975Google Scholar
  35. Fröst, S., Holm, G., Asker, S. Flavonoid patterns and the phylogeny of barley. Hereditas 79, 133–142 (1975)Google Scholar
  36. Goodman, M.M.: The races of maize. II. Use of multivariate analysis of variance to measure morphological similarity. Crop Sci. 8, 693–698 (1968)Google Scholar
  37. Gottlieb, L.D.: Allelic diversity in the outcrossing annual plant Stephanomeria exigua ssp. carotifera. (Compositae). Evolution 29, 213–225 (1975)Google Scholar
  38. Hamrick, J.L.; Allard, R.W.: Microgeographical variation in allozyme frequencies in Avena barbata. Proc. Nat. Acad. Sci. U.S.A. 69, 2100–2104 (1972)Google Scholar
  39. Harlan, J.R.: Our vanishing genetic resources. Science 188, 618–621 (1975)Google Scholar
  40. Harlan, J.R.: Sources of genetic defence. Ann. N.Y. Acad. Sci. 287, 345–356 (1977)Google Scholar
  41. Harlan, J.R.: Genetic resources in wild relatives of crops. Crop Science 16, 329–333 (1976)Google Scholar
  42. Hartley, W.: The phytogeographical basis of pasture plant introduction. Genetica Agraria 17, 135–146 (1963)Google Scholar
  43. Jain, S.K.: Population structure and the effects of breeding system. In: Crop Genetic Resources for Today and Tomorrow, (eds. Frankel, O.H.; Hawkes, J.G.), pp. 15–36. Cambridge: C.U.P. 1975Google Scholar
  44. Jain, S.K.: Patterns of survival and microevolution in plant populations. In: Population Genetics and Ecology, (eds. Karlin, S.; Nevo, E.), pp. 49–89. N.Y.: Academic Press 1976Google Scholar
  45. Jain, S.K.; Allard, R.W.: Population studies in predominantly self-pollinated species. I. Evidence for heterozygote advantage in a closed population of barley. Proc. Nat. Acad. Sci. U.S.A. 46, 1371–1377 (1960)Google Scholar
  46. Jain, S.K.; Qualset, CO.; Bhatt, G.M.; Wu, K.K.: Geographical patterns of phenotypic diversity in a world collection of durum wheats. Crop Science 15, 700–704 (1975)Google Scholar
  47. Johnson, G.B.: Enzyme polymorphism and metabolism. Science 184, 28–37 (1974)Google Scholar
  48. Kahler, A.L.; Allard, R.W.: Genetics of isozyme variants in barley. I. Esterases. Crop Science 10, 444–448 (1970)Google Scholar
  49. Kahler, A.L.; Allard, R.W.; Krzakowa, M.; Nevo, E.; Wehrhan, C.F.: Isozyme phenotype — environment associations in natural populations of the slender wild oat (Avena barbata) in Israel. In preparation (1977)Google Scholar
  50. Koehn, R.K.: Esterase heterogeneity: Dynamics of a polymorphism. Science 163, 943–944 (1969)Google Scholar
  51. Levin, D.A.: Interspecific hybridization, heterozygosity and gene exchange in Phlox. Evolution 29, 37–51 (1975a)Google Scholar
  52. Levin, D.A.: Genic heterozygosity and protein polymorphism among local populations of Oenothera biennis. Genetics 79, 477–491 (1975b)Google Scholar
  53. Levin, D.A.: Consequences of long-term selection, inbreeding and isolation in Phlox. II. The organization of allozymic variability. Evolution 30, 463–472 (1976)Google Scholar
  54. Levins, R.: Theory of fitness in a heterogeneous environment. II. Developmental flexibility and niche selection. Amer. Natur. 97, 75–90 (1963)Google Scholar
  55. Levy, M.; Levin, D.A.: Genic heterozygosity and variation in permanent translocation heterozygotes of the Oenothera biennis complex. Genetics 79, 493–512 (1975)Google Scholar
  56. Lewontin, R.C.: The genetic basis of evolutionary change. N.Y.: Columbia Univ. Press. 1974Google Scholar
  57. Lundkvist, K.; Rudin, D.: Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas 85, 67–74 (1977)Google Scholar
  58. McNaughton, S.J.: Natural selection at the enzyme level. Amer. Natur. 108, 616–624 (1974)Google Scholar
  59. Marshall, D.R.: The advantages and disadvantages of genetic homogeneity. Ann. N.Y. Acad. Sci. 287, 1–20 (1977)Google Scholar
  60. Marshall, D.R.; Allard, R.W.: Maintenance of isozyme polymorphisms in natural populations of Avena barbata. Genetics 66, 393–399 (1970)Google Scholar
  61. Marshall, D.R.; Broue, P.; Pryor, A.J.: Adaptive significance of alcohol dehydrogenase isozymes in maize. Nature New Biol. 244, 16–17 (1973)Google Scholar
  62. Marshall, D.R., Brown, A.H.D.: Stability of performance of mixtures and multilines. Euphytica 22, 405–412 (1973)Google Scholar
  63. Marshall, D.R.; Brown, A.H.D.: The charge state model of protein polymorphism in natural populations. J. Molec. Evol. 6, 149–163 (1975a)Google Scholar
  64. Marshall, D.R.; Brown, A.H.D.: Optimum sampling strategies in genetic conservation. In: Crop Genetic Resources for Today and Tomorrow (eds. Frankel, O.H.; Hawkes, J.G.) pp. 53–80. Cambridge: C.U.P. 1975bGoogle Scholar
  65. Mather, K.: Genetical Structure of Populations. London: Chapman & Hall 1973Google Scholar
  66. Mayr, E.: Animal Species and Evolution. Cambridge, Mass.: Belknap 1965Google Scholar
  67. Miller, R.D.; Allard, R.W.: Additional patterns of genetic differentiation in Avena barbata in California. Genetics 83, s 50 (1976)Google Scholar
  68. Nakagahra, M.; Akihama, T.; Hayashi, K.: Genetic variation and geographic cline of esterase isozymes in native rice varieties. Japan. J. Genet. 50, 373–382 (1975)Google Scholar
  69. National Academy of Sciences: Genetic Vulnerability of Major Crops. Washington, D.C. 1972Google Scholar
  70. Nei, M.: Molecular population genetics and evolution. N.Y.: Elsivier 1975Google Scholar
  71. Nevo, E.: Genetic variation in natural populations: patterns and theory. Theoret. Popn. Biology (in press) (1978)Google Scholar
  72. Pai, C.; Endo, T.; Oka, H.I.: Genic analysis for peroxidase isozymes and their organ specificity in Oryza perennis and O. sativa. Can. J. Genet. Cytol. 15, 845–853 (1973)Google Scholar
  73. Pai, C., Endo, T.; Oka, H.I.: Genic analysis for acid phosphatase isozymes in Oryza perennis and O. sativa. Can. J. Genet. Cytol. 17, 637–650 (1975)Google Scholar
  74. Pickersgill, B.: Taxonomy and the origin and evolution of cultivated plants in the New World. Nature 268, 591–595 (1977)Google Scholar
  75. Qualset, C.O.: Sampling germplasm in a center of diversity: an example of disease resistance in Ethiopian barley. In: Crop Genetic Resources for Today and Tomorrow (eds. Frankel, O.H.; Hawkes, J.G.), pp. 81–96. Cambridge: C.U.P. 1975Google Scholar
  76. Reinert, J.; Bajaj, Y.P.S.: Applied and fundamental aspects of plant cell, tissue and organ culture. Berlin: Springer-Verlag 1977Google Scholar
  77. Rick, C.M.: Potential genetic resources in tomato species: Clues from observations in native habitats. In: Genes, Enzymes, Populations (ed. Srb, A.M.), pp. 255–269 N.Y.: Plenum 1973Google Scholar
  78. Rick, C.M.: Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet. Agr. 30, 249–259 (1976)Google Scholar
  79. Rick, C.M.; Fobes, J.F.: Allozymes of Galapagos tomatoes: Polymorphism, geographic distribution and affinities. Evolution 29, 443–457 (1975a)Google Scholar
  80. Rick, C.M., Fobes, J.F.: Allozyme variation in the cultivated tomato. Bull. Torrey Bot. Club 102, 376–384 (1975b)Google Scholar
  81. Rick, C.M.; Fobes, J.F.: Peroxidase complex with concomitant anodal and cathodal variation in red-fruited tomato species. Proc. Nat. Acad. Sci. U.S.A. 73, 900–904 (1976)Google Scholar
  82. Rick, C.M.; Fobes, J.F.; Holle, M.: Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Syst. Evol. 127, 139–170 (1977)Google Scholar
  83. Rick, C.M.; Zobel, R.W.; Fobes, J.F.: Four peroxidase loci in red-fruited tomato species: Genetics and geographic distribution. Proc. Nat. Acad. Sci. U.S.A. 71, 835–839 (1974)Google Scholar
  84. Stuber, C.W.; Goodman, M.M.; Johnson, F.M.: Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.) Biochem. Genet. 15, 383–394 (1977)Google Scholar
  85. Shahi, B.B.; Morishima, H.; Oka, H.I.: A survey of variations in peroxidase, acid phosphatase and esterase isozymes of wild and cultivated Oryza species. Japan J. Genet. 44, 303–319 (1969)Google Scholar
  86. Suneson, C.A.; Wiebe, G.A.: A ‘Paul Bunyan’ plant breeding enterprise with barley. Crop Science 2, 347–348 (1962)Google Scholar
  87. Tigerstedt, P.M.A.: Genetic structure of Picea abies populations as determined by the isozyme approach. Proc. Joint IUFRO Meeting S02041-3 Stockholm 283–291 (1974)Google Scholar
  88. Torres, A.M.; Diedenhofen, U.; Johnstone, I.M.: The early allele of alcohol dehydrogenase in sunflower populations. J. Heredity 68, 11–16 (1977)Google Scholar
  89. Wall, J.R.; Wall, S.W.: Isozyme polymorphisms in the study of evolution in the Phaseolus vulgaris — P. coccineus complex in Mexico. In: Isozymes IV Genetics and Evolution (ed. Markert, C.L.), pp. 287–306. N.Y.: Academic 1975Google Scholar
  90. Weir, B.S.; Allard, R.W.; Kahler, A.L.: Further analysis of complex allozyme polymorphisms in a barley population. Genetics 78, 911–919 (1974)Google Scholar
  91. Whyte, R.O.: The conservation of wild species. Genetica Agraria 17, 398–402 (1963)Google Scholar
  92. Wright, S.: Evolution and the genetics of populations II. Chicago: Univ. Chicago Press 1969Google Scholar
  93. Zohary, D.: The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In: The Domestication and Exploration of Plants and Animals (eds. Ucko, P.J.; Dimbley, G.W.) pp. 47–66 London: Duckworth 1969Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. H. D. Brown
    • 1
  1. 1.Division of Plant IndustryCSIROCanberraAustralia

Personalised recommendations