Advertisement

Molecular and General Genetics MGG

, Volume 228, Issue 1–2, pp 307–311 | Cite as

cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin

  • Jasna Rakonjac
  • Mirjana Milic
  • Dragutin J. Savic
Short Communication

Summary

Mutations in the cysB and cysE genes of Escherichia coli K12 cause an increase in resistance to the gyrase inhibitor novobiocin but not to coumermycin, acriflavine and rifampicin. This unusual relationship was also observed among spontaneous novobiocin resistant (Novr) mutants: 10% of Novr mutants isolated on rich (LA) plates with novobiocin could not grow on minimal plates, and among those approximately half were cysB or cysE mutants. Further analyses demonstrated that cysB and cysE negative alleles neither interfere with transport of novobiocin nor affect DNA supercoiling.

Key words

Escherichia coli cysB and cysE genes Resistance to novobiocin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12. Genetics 39:440–452Google Scholar
  2. Bachmann BJ, Low KB (1990) Linkage map of Escherichia coli K-12, edn 8. Microbiol Rev 54:130–197Google Scholar
  3. Borowiec JA, Gralla JD (1985) Supercoiling response of the lac Ps promoter in vitro. J Mol Biol 184:587–598Google Scholar
  4. Borowiec JA, Zhang L, Sasse-Dwight S, Gralla JD (1987) DNA supercoiling promotes formation of a bent repression loop in lac DNA. J Mol Biol 196:101–111Google Scholar
  5. Coleman WG, Leive L (1979) Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol 139:899–910Google Scholar
  6. Csonka LN, Clark AJ (1980) Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol 143:529–530Google Scholar
  7. Davis RW, Botstein D, Roth JR (1980) A manual for genetic engineering. Advanced bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  8. Denk D, Böck A (1987) L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and cysteine-excreting mutant. J Gen Microbiol 133:515–525Google Scholar
  9. DeWitt SK, Adelberg EA (1962) The occurrence of genetic transposition in a strain of Escherichia coli. Genetics 47:577–585Google Scholar
  10. DiNardo S, Voelkel KA, Sternglanz R, Reynolds AE, Wright A (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:45–51Google Scholar
  11. Drlica K, Franco JR (1988) Inhibitors of DNA topoisomereases. Biochemistry 27:2253–2259Google Scholar
  12. Gellert M, O'Dea MH, Itoh T, Tomizawa JI (1976) Novobiocin and coumermycin inhibit DNA supercoiling catalysed by DNA gyrase. Proc Natl Acad Sci USA 73:4474–4478Google Scholar
  13. Gottesman MM (1976) Isolation and characterization of λ-specialized transducing phage for the Escherichia coli DNA ligase gene. Virology 72:33–44Google Scholar
  14. Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606Google Scholar
  15. Hryniewicz M, Palucha A, Hulanicka D (1988) Construction of cys::lac fusions in Escherichia coli and their use in the isolation of constitutive cysB mutants. J Gen Microbiol 134:763–769Google Scholar
  16. Hryniewicz M, Sirko A, Palucha A, Böck A, Hulanicka D (1990) Sulphate and thiosulphate transport in Escherichia coli K-12: Identification of a gene encoding a novel protein involved in thiosulphate transport. J Bacteriol 172:3358–3366Google Scholar
  17. Hulanicka D, Hallquist SG, Kredich NM, Mojica T (1979) Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J Bacteriol 140:141–146Google Scholar
  18. Jones-Mortimer MC (1968) Positive control of sulphate reduction in Escherichia coli. Isolation, characterization and mapping of cysteineless mutants of E. coli K-12. Biochem J 110:589–595Google Scholar
  19. Jones-Mortimer MC (1973) Mapping of structural genes for enzymes of cysteine biosynthesis in Escherichia coli K-12 and Salmonella typhimurium LT2. Heredity 31:213–221Google Scholar
  20. Kredich NM (1987) Biosynthesis of cysteine. In: Neidhardt FC, Ingraham JL, Magasanik B, Low KB, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington DC, pp 419–428Google Scholar
  21. Low B (1972) Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev 36:587–607Google Scholar
  22. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  23. Nikaido H, Vaara M (1987) Outer membrane. In: Neidhardt FC, Ingraham JL, Magasanik B, Low KB, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, DC, pp 7–22Google Scholar
  24. Ostrowski J, Jagura-Burdzy G, Kredich NM (1987) DNA sequences of the cysB regions of S. typhimurium and E. coli. J Biol Chem 262:5999–6005Google Scholar
  25. Pruss GJ, Drlica K (1986) Topoisomerase I mutants: The gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci USA 83:8952–8956Google Scholar
  26. Shaw KJ, Berg CM (1979) Escherichia coli K-12 auxotrophs induced by insertion of transposable element Tn5. Genetics 92:741–747Google Scholar
  27. Sirko A, Hrynewtcz M, Hulanicka D, Böck A (1990) Sulphate and thiosulphate transport in Escherichia coli K-12: Nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357Google Scholar
  28. Taylor AL, Trotter CD (1967) Revised linkage map of Escherichia coli. Bacteriol Rev 31:332–353Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jasna Rakonjac
    • 1
  • Mirjana Milic
    • 1
  • Dragutin J. Savic
    • 1
  1. 1.Institute of Molecular Genetics and Genetic EngineeringBelgradeYugoslavia

Personalised recommendations