Advertisement

Molecular and General Genetics MGG

, Volume 228, Issue 1–2, pp 201–208 | Cite as

The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion

  • Wolfgang K. F. Nacken
  • Ralf Piotrowiak
  • Heinz Saedler
  • Hans Sommer
Article

Summary

We present the genomic structure of Tam1, a transposable element from Antirrhinum majus. The Taml element is 15.2 kb long and includes two genes that are transcribed to produce a 2.4 kb (tnpl) and a 5 kb mRNA (tnp2). These transcripts partially overlap and the exons are scattered over the whole element. Tnp1 encodes a 53 kDa protein as deduced from the cDNA sequence. The 5 kb transcript of tnp2 contains an open reading frame that shares 45% homology with part of the tnpD gene of En/Spm from maize and 48% homology with an open reading frame of the Tgm element from Glycine max. We discuss the possible functions of these genes by analogy with En/Spm. Additionally, a number of flanking sequences of Taml insertions were analysed to investigate the sequence specificity of insertion. From these studies we conclude that Taml transposes predominantly into AT-rich regions that can be unique as well as repetitive. No specific target sequence of insertion could be found.

Key words

Antirrhinum majus Plant transposable element Taml structure Specificity of insertion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks JA, Masson P, Fedoroff N (1988) Molecular mechanism in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 2:1364–1380Google Scholar
  2. Bonas U, Sommer H, Harrison BJ, Saedler H (1984a) The transposable element Taml of Antirrhinum majus is 17 kb long. Mol Gen Genet 194:138–143Google Scholar
  3. Bonas U, Sommer H, Saedler H (1984b) The 17 kb Taml element of Antirrhinum majus induces a 3 by duplication upon integration into the chalcone synthase gene. EMBO J 3:1015–1019Google Scholar
  4. Coen E, Carpenter R (1986) Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends Genet 2:292–296Google Scholar
  5. Coen E, Carpenter R, Martin C (1986) Transposable elements generate novel spatial pattern of gene expression in A. majus. Cell 47:285–296Google Scholar
  6. Coen E, Doyle S, Carpenter R (1990) The homeotic gene floricaula, required for flower development is expressed sequentially in Antirrhinum majus. Cell 63:1311–1322Google Scholar
  7. Dooner HK, Belachew A (1989) Transposition of the maize element Ac from the bz-m2(ac) allele. Genetics 122:447–457Google Scholar
  8. Fedoroff N (1989) About maize transposable elements and development. Cell 56:181–191Google Scholar
  9. Frey M, Reinecke J, Grant S, Saedler H, Gierl A (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J 9:4037–4044Google Scholar
  10. Gierl A, Lütticke S, Saedler H (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J 7:4045–4053Google Scholar
  11. Gierl A, Saedler A, Peterson PA (1989) Maize transposable elements. Annu Rev Genet 23:71–85Google Scholar
  12. Goodall GJ, Filipowicz W (1989) The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58:473–483Google Scholar
  13. Grant S, Gierl A, Saedler H (1990) En/Spm encoded tnpA protein requires a specific target sequence for suppression. EMBO J 9:2029–2035Google Scholar
  14. Greenblatt IM, Brink RA (1962) Twin mutations in medium variegated pericarp maize. Genetics 47:489–501Google Scholar
  15. Harrison BJ, Carpenter R (1973) A comparison of the instabilities at the nivea and pallida loci in Antirrhinum majus. Heredity 31:309–323Google Scholar
  16. Hehl R, Sommer H, Saedler H (1987) Interaction between the Taml and Tam2 transposable elements of Antirrhinum majus. Mol Gen Genet 207:47–53Google Scholar
  17. Hehl R, Nacken WKF, Krause A, Saedler H, Sommer H (1991) Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16:369–371Google Scholar
  18. Hohn B (1979) In vitro packaging of lambda and cosmid DNA. Methods Enzymol 68:299–309Google Scholar
  19. Kloppstech K, Schweiger HG (1976) In vitro translation of poly(A)-RNA from Acetabularia. Cytobiology 13:394–400Google Scholar
  20. Krebbers E, Hehl R, Piotrowiak R, Lönnig WE, Sommer H, Saedler H (1987) Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Mol Gen Genet 209:499–507Google Scholar
  21. Kunze R, Starlinger P (1989) The putative transposase of the transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J 8:3177–3185Google Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  23. Masson P, Rutherford G, Banks JA, Fedoroff N (1989) Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58:755–765Google Scholar
  24. Maxam A, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560Google Scholar
  25. Menssen A, Höhmann S, Martin W, Schnable PS, Peterson PA, Saedler H, Gierl A (1990) The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9:3051–3057Google Scholar
  26. Murray NE (1982) Phage lambda and molecular cloning In: Hendrix RW, Roberts JW, Stahl FW, Weissberg RA (eds) Lambda II. Cold Spring Harbor Laboratory Press, New York, pp 395–432Google Scholar
  27. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623Google Scholar
  28. O'Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25–35Google Scholar
  29. Pereira A, Schwarz-Sommer ZS, Gierl A, Peterson PA, Saedler H (1985) Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. EMBO J 4:17–23Google Scholar
  30. Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Zs, Saedler H (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J 5:835–841Google Scholar
  31. Peterson PA (1970) The En mutable system in maize. III. Transposition associated with mutational events. Theor Appl Genet 40:367–377Google Scholar
  32. Rhodes PR, Vodkin LO (1988) Organization of the Tgm family of transposable elements in soybean. Genetics 120:597–604Google Scholar
  33. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  34. Schwarz-Sommer Zs, Gierl A, Cuypers H, Peterson PA, Saedler H (1985) Plant transposable elements generate DNA sequence diversity needed in evolution. EMBO J 4:591–597Google Scholar
  35. Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mot Gen Genet 202:429–434Google Scholar
  36. Sommer H, Carpenter R, Harrison BJ, Saedler H (1985) The transposable element Tam3 of A. majus generates a novel type of sequence alterations upon excision. Mot Gen Genet 199:225–231Google Scholar
  37. Sommer H, Beltran JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Zs (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613Google Scholar
  38. Streck RD, MacGaffey JE, Beckendorf SK (1986) The structure of hobo transposable elements and their insertion sites. EMBO J 5:3615–3623Google Scholar
  39. Upadhyaya KC, Sommer H, Krebbers E, Saedler H (1985) The paramutagenic line niv-44 has a 5 kb insert, Tam2, in the chatcone synthase gene of Antirrhinum majus. Mot Gen Genet 199:201–207Google Scholar
  40. Vodkin LO, Rhodes PR, Goldberg RB (1983) A lectin gene insertion has the structural features of a transposable element. Cell 34:1023–1031Google Scholar
  41. Wessler SR (1989) The splicing of maize transposable elements from pre-mRNA, a minireview. Gene 82:127–133Google Scholar
  42. Wienand U, Saedler H (1987) Plant transposable elements: unique structures for gene tagging and gene cloning. In: Hohn T, Schell J (eds) Plant infectious agents; Plant gene research. Springer, Wien, NY, pp 205–227Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Wolfgang K. F. Nacken
    • 1
  • Ralf Piotrowiak
    • 1
  • Heinz Saedler
    • 1
  • Hans Sommer
    • 1
  1. 1.Max-Planck-Institut für ZüchtigungsforschungKöln 30Germany

Personalised recommendations