Advertisement

Archive for Rational Mechanics and Analysis

, Volume 20, Issue 5, pp 341–372 | Cite as

Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions

  • Donald R. Smith
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Stationary Solution Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Finn, R., Estimates at infinity for stationary solutions of the Navier-Stokes equations. Bull. Math. de la Soc. Sci. Math. Phys. de la R.P.R., Tome 3 (53), 4, (1959).Google Scholar
  2. [2]
    Finn, R., On the Exterior Stationary Problem and Associated Perturbation Problems for the Navier-Stokes Equations. Stanford University TR (Feb. 1, 1965); Arch. Rational Mech. Anal. 19, 363–406 (1965).Google Scholar
  3. [3]
    Oseen, C., Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft 1927.Google Scholar
  4. [4]
    Chang, I-Dee, & R. Finn, On the solution of a class of equations occuring in continuum mechanics, with applications to the Stokes paradox. Arch. Rational Mech. Anal. 7, 388–401 (1961).Google Scholar
  5. [5]
    Finn, R., Stationary solutions of the Navier-Stokes equations. Proc. Symp. Appl. Math., Amer. Math. Soc., 19 (1965).Google Scholar
  6. [6]
    Odqvist, F.K.G., Die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32, 329–375 (1930).Google Scholar
  7. [7]
    Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flow (Transl. from Russian). New York: Gordon & Breach.Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Donald R. Smith
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations