## Abstract

It is known that when one branch of a simple fold in a bifurcation diagram represents (linearly) stable solutions, the other branch represents unstable solutions. The theory developed here can predict instability of some branches close to folds, without knowledge of stability of the adjacent branch, provided that the underlying problem has a variational structure. First, one particular bifurcation diagram is identified as playing a special role, the relevant diagram being specified by the choice of functional plotted as ordinate. The results are then stated in terms of the shape of the solution branch in this distinguished bifurcation diagram. In many problems arising in elasticity the preferred bifurcation diagram is the loaddisplacement graph. The theory is particularly useful in applications where a solution branch has a succession of folds.

The theory is illustrated with applications to simple models of thermal selfignition and of a chemical reactor, both of which systems are of Émden-Fowler type. An analysis concerning an elastic rod is also presented.

## Preview

Unable to display preview. Download preview PDF.

### References

- Antman, S. S., & G. Rosenfeld (1978), Global behavior of buckled states of nonlinearly elastic rods. SIAM Review
**20**, p. 513. Corrigenda (1980)**22**, p. 186.Google Scholar - Chandrasekhar, S. (1939), An Introduction to the Study of Stellar Structure. U. of Chicago Press.Google Scholar
- Chow, S. N., & R. Lauterbach (1985), A Bifurcation Theorem for Critical Points of Variational Problems. IMA Report
*#*179.Google Scholar - Crandall, M. C., & P. H. Rabinowitz (1973), Bifurcation, Perturbation of Simple Eigenvalues and Linearized Stability. Archive for Rational Mechanics and Analysis
**52**, pp. 160–192.Google Scholar - Davis, H. T. (1962), Introduction to Nonlinear Differential and Integral Equations, Dover, New York.Google Scholar
- Decker, D. W., & H. B. Keller (1980), Multiple Limit Point Bifurcation. J. of Math. Anal. and Appl.
**65**, pp. 417–430.Google Scholar - Decker, D. W., & H. B. Keller (1981), Path Following Near Bifurcation. Comm. Pure and Applied Math.
**34**, p. 149.Google Scholar - émden, R. (1907), Gaskugeln. Berlin and Leipzig.Google Scholar
- Gel'fand, I. M. (1963), Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl. Series 2 Vol.
**29**, pp. 295–381.Google Scholar - Iooss, G., & D. D. Joseph (1980), Elementary Stability and Bifurcation Theory. Springer, New York.Google Scholar
- Jackson, R. (1973), A simple geometric condition for instability in catalyst pellets at unit Lewis number. Chemical Engineering Science
**28**, pp. 1355–1358.Google Scholar - James, R. D. (1981), The equilibrium and post-bucking behavior of an elastic curve governed by a non-convex energy. J. Elasticity
**11**, pp. 239–269.Google Scholar - Joseph, D. D. (1979), Factorization Theorems and Repeated Branching of Solutions at a Simple Eigenvalue. Annals of the New York Academy of Sciences
**316**, pp. 150–167.Google Scholar - Joseph, D. D., & T. S. Lundgren (1973), Quasilinear Dirichlet Problems Driven by Positive Sources. Arch. Rational Mech. Anal.
**49**, pp. 241–269.Google Scholar - Katz, J. (1978) (1979), On the number of unstable modes of an equilibrium I and II. Mon. Not. R. Astr. Soc.
**183**, pp. 765–769, and**189**, pp. 817–822.Google Scholar - Keller, H. B. (1977), Constructive Methods for Bifurcation and Nonlinear Eigenvalue Problems. Proc. 3rd Int. Symp. on Computing Method in Applied Science and Engineering.Google Scholar
- Maddocks, J. H. (1984), Stability of nonlinearly elastic rods. Archive for Rational Mechanics and Analysis
**85**, pp. 311–354.Google Scholar - Maddocks, J. H. (1985), Restricted quadratic forms and their application to bifurcation and stability in constrained variational principles. SIAM J. of Math. Anal.
**16**, pp. 47–68.Google Scholar - Maddocks, J. H., & Jepson, A. D. (1986), Exchange of stability in variational bifurcation problems. In preparation.Google Scholar
- Mehta, B. N., & R. Aris (1971), A note on the form of the Émden-Fowler equation. J. Math. Anal. & Applications
**36**, pp. 611–621.Google Scholar - Sattinger, D. H. (1972), Stability of Solutions of Nonlinear Equations. J. Math. Anal. & Appl.
**39**, pp. 1–12.Google Scholar - Shatah, J., & W. Strauss (1985), Instability of nonlinear bound states. Comm. Math. Phys.
**100**, pp. 173–190.Google Scholar - Thompson, J. M. T. (1979), Stability predictions through a succesion of folds. Phil. Trans. Roy. Soc. of London
**192 A**, p. 1386.Google Scholar - Weinberger, H. (1978), On the Stability of Bifurcating Solutions. Reprint from “Nonlinear Analysis” (dedicated to Erich Rothe), Academic Press.Google Scholar
- Wente, Henry C. (1980), The Stability of the Axially Symmetric Pendent Drop. Pac J. of Math.
**88**, pp. 421–469.Google Scholar - Zeidler, Eberhard (1984), Nonlinear Functional Analysis and its Applications, Part III. Variational Methods and Optimization, Springer-Verlag, New York.Google Scholar