Advertisement

Theoretical and Applied Genetics

, Volume 47, Issue 6, pp 275–283 | Cite as

Spezifische Giemsa-Färbung von heterochromatischen Chromosomensegmenten bei Vicia faba, Allium cepa und Paeonia tenuifolia

  • B. Friebe
Article

Zusammenfassung

Im theoretischen Teil werden die verschiedenen Hypothesen über den Mechanismus der unterschiedlichen Giemsa-Färbung von Eu- und Heterochromatin diskutiert. Im experimentellen Teil wird das Giemsa-Bandenmuster bei Vieia faba, Allium cepa und Paeonia tenuifolia beschrieben. Sowohl in den stark kondensierten Metaphase-Chromosomen als auch in den Interphase-Kernen können die heterochromatischen Chromosomensegmente auf Grund der stärkeren Giemsa-Färbung vom Euchromatin unterschieden werden. Die Zahl der Chromocentren ist jedoch in den meisten Fällen kleiner als die der Giemsa-Banden in den Metaphase-Chromosomen, was auf die Fusion heterochromatischer Chromosomenabschnitte in der Interphase hinweist.

Innerhalb einer Art zeigen auch nicht-homologe Chromosomen ein ähnliches Giemsa-Bandenmuster. Diese für eine Art charakteristische Verteilung von Eu- und Heterochromatin wurde von Heitz (1935) als “äquilokale Heterochromatie” bezeichnet. Die Bedeutung dieser Erscheinung ist weitgehend unbekannt.

Differential Giemsa staining of heterochromatic regions in the chromosomes of Vicia faba, Allium cepa and Paeonia tenuifolia

Summary

Hypotheses for the mechanism of differential Giemsa staining of euchromatin and heterochromatin are discussed. The banding-patterns of Vicia faba, Allium cepa and Paeonia tenuifolia are described. Heterochromatic chromosome segments have been identified in metaphase chromosomes to correspond with those to be found in interphase nuclei. The fact that the number of chromocenters is usually smaller than the number of Giemsa bands in the metaphase chromosomes is supposed to be due to fusion of heterochromatic sections during interphase. Within each species non-homologous chromosomes exhibit similar patterns. The significance of this phenomenon, which has been called “aequilocal heterochromacy” by Heitz, is so far unknown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arrighi, F.E.; Hsu, T.C.: Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81–86 (1971a)Google Scholar
  2. Arrighi, F.E.; Hsu, T.C.: Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma (Berl.) 34, 243–253 (1971b)Google Scholar
  3. Ayonoadu, U.; Rees, H.: DNA synthesis in rye chromosomes. Heredity 30, 233–240 (1973)Google Scholar
  4. Baker, W.K.: Crossing over in heterochromatin. Am. Nat. XCII, 59–60 (1958)Google Scholar
  5. Barigozzi, C.; Di Pasquale, A.: Heterochromatic and euchromatic genes acting on quantitative characters in Drosophila melanogaster. Heredity 7, 389–399 (1953)Google Scholar
  6. Britten, R.J.; Kohne, D.E.: Repeated sequences in DNA. Science 161, 529–540 (1968)Google Scholar
  7. Caspersson, T.; Farber, S.; Foley, G.E.; Kudynowski, J.; Modest, E.J.; Simonsson, E.; Wagh, U.; Zech, L.: Chemical differentiation along metaphase chromosomes. Exptl. Cell Res. 49, 219–222 (1968)Google Scholar
  8. Caspersson, T.; Zech, L.; Modest, E.J.; Foley, G.E.; Wagh, U.; Simonsson, E.: Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exptl. Cell Res. 58, 128–140 (1969)Google Scholar
  9. Chen, T.R.; Ruddle, F.H.: Karyotype analysis utilizing differentially stained constitutive heterochromatin of human and murine chrosomes. Chromosoma (Berl.) 34, 51–72 (1971)Google Scholar
  10. Comings, D.E.; Avelino, E.; Okada, T.A.; Wyandt, H.E.: The mechanism of C- and G-banding of chromosomes. Exptl. Cell Res. 77, 469–493 (1973)Google Scholar
  11. Comings, D.E.; Okada, T.A.: Mechanisms of chromosome banding. III. Similarity between G-bands of mitotic chromosomes and chromomeres of meiotic chromosomes. Chromosoma (Berl.) 48, 65–71 (1974)Google Scholar
  12. Comings, D.E.: Mechanisms of chromosome banding. IV. Optical properties of the Giemsa dyes. Chromosoma (Berl.) 50, 89–110 (1975a)Google Scholar
  13. Comings, D.E.; Kovacs, B.W.; Avelino, E.; Harris, D.C.: Mechanisms of chromosome banding. V. Quinacrine banding. Chromosoma (Berl.) 50, 111–145 (1975b)Google Scholar
  14. Cullis, C.A.; Schweizer, D.: Repetitious DNA in some Anemone species. Chromosoma (Berl.) 44, 417–421 (1974)Google Scholar
  15. Darlington, C.D.; Haque, A.: Organisation of DNA synthesis in rye chromosomes. Chromosomes Today 1, 102–107 (1966)Google Scholar
  16. Darvey, N.L.; Gustafson, J.P.: Identification of rye chromosomes in wheat-rye addition lines and Tritioale by heterochromatin bands. Crop Sci. 15, 239–243 (1975)Google Scholar
  17. Döbel, P.; Rieger, R.; Michaelis, A.: The Giemsa banding patterns of the standard and four reconstructed karyotypes of Vicia faba. Chromosoma (Berl.) 43, 409–422 (1973)Google Scholar
  18. El-Gadi, A.; Elkington, T.T.: Comparison of the Giemsa C-band karyotypes and the relationship of Alliwn cepa, A. fistulosum and A. galanthum. Chromosoma (Berl.) 51, 19–23 (1975)Google Scholar
  19. Evans, J.H.: Uptake of 3H-thymidine and patterns of DNA replication in nuclei and chromosomes of Vicia faba. Exptl. Cell Res. 35, 381–393 (1964)Google Scholar
  20. Evans, J.H.; Buckton, K.E.; Sumner, A.T.: Cytological mapping of human chromosomes: Results obtained with quinacrine fluorescence and the acetic-saline-Giemsa technique. Chromosoma (Berl.) 35, 310–325 (1971)Google Scholar
  21. Fabergé, A.C.: Snail stomach cytase, a new reagent for plant cytology. Stain Technology 20, 1–4 (1945)Google Scholar
  22. Filion, W.G.: Differential Giemsa staining in plants. I. Banding patterns in three cultivars of Tulipa. Chromosoma (Berl.) 49, 51–60 (1974)Google Scholar
  23. Fiskesjö, G.: C-banded male meiotic chromosomes of Acheta domesticus. Hereditas (Lund) 76, 157–160 (1974a)Google Scholar
  24. Fiskesjö, G.: Two types of constitutive heterochromatin made visible in Allium by a rapid C-banding method. Hereditas (Lund) 78, 153–156 (1974b)Google Scholar
  25. Fox, D.P.; Carter, K.C.; Hewitt, G.M.: Giemsa banding and chiasma distribution in the desert locust. Heredity 31, 272–276 (1973)Google Scholar
  26. Frenster, J.H.: Biochemistry and molecular biophysics of heterochromatin and euchromatin. Handbook of Molecular Cytology, 253–276. Amsterdam: North Holland Comp. 1969Google Scholar
  27. Fussell, C.P.: The position of interphase chromosomes and late replicating DNA in centromere and telomere regions of Allium cepa L. Chromosoma (Berl.) 50, 201–210 (1975)Google Scholar
  28. Ganner, E.; Evans, H. J.: The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma (Berl.) 35, 326–341 (1971)Google Scholar
  29. Gill, B.S.; Kimber, G.: A Giemsa-C-banding technique for cereal chromosomes. Cereal Res. Comm. 2, 87–94 (1974a)Google Scholar
  30. Gill, B.S.; Kimber, G.: The Giemsa C-bandedkaryotype of rye. Proc. Nat. Acad. Sci. USA 71, 1247–1249 (1974b)Google Scholar
  31. Greilhuber, J.: Hy-banding: A new quick technique for heterochromatin staining in plant chromosomes. Naturwiss. 61, 170–172 (1974)Google Scholar
  32. Hadlaczky, GJ.; Belea, A.: C-banding in wheat evolutionary cytogenetics. Plant Sci. Letters 4, 85–88 (1975)Google Scholar
  33. Hansen-Melander, E.; Melander, Y.; Olin, M.L.: Chromosome preparation by air drying at low temperature and Giemsa banding procedures. Hereditas (Lund) 76, 35–40 (1974)Google Scholar
  34. Heitz, E.: Chromosomenstruktur und Gene. Z. Ind. Abst. Vererbgsl. 70, 402–447 (1935)Google Scholar
  35. Kato, H.; Moriwaki, K.: Factors involved in the production of banded structures in mammalian chromosomes. Chromosoma (Berl.) 38, 105–120 (1972)Google Scholar
  36. Lima-de-Faria, A.: Differential uptake of tritiated thymidineintohetero-andeuchromatin of Melanopluss and Secale. J. Biophys. Biochem. Cytol. 6, 457–466 (1959)Google Scholar
  37. Lima-de-Faria, A.: DNA replication and gene amplification in heterochromatin. Handbook of Molecular Cytology, 277–325. Amsterdam: North Holland Comp. 1969Google Scholar
  38. Linnert, G.: Die Struktur der Pachytänchromosomen in Euchromatin und Heterochromatin und ihre Auswirkung auf die Chiasmabildung bei Salvia-Arten. Chromosoma (Berl.) 7, 90–128 (1955)Google Scholar
  39. Marks, G.E.; Schweizer, D.: Giemsa banding: Karyotype differences in some species of Anemone and in Hepatica nobilis. Chromosoma (Berl.) 44, 405–416 (1974)Google Scholar
  40. Marks, G.E.: Giemsa banding of meiotic chromosomes in Anemone blanda L. Chromosoma (Berl.) 49, 113–119 (1974)Google Scholar
  41. McKay, R.D.G.: The mechanism of G and C banding in mammalian metaphase chromosomes. Chromosoma (Berl.) 44, 1–14 (1973)Google Scholar
  42. McKenzie, W.H.; Lubs, H.A.: An analysis of the technical variables in the production of C bands. Chromosoma (Berl.) 41, 175–182 (1973)Google Scholar
  43. Merker, A.: A Giemsa technique for rapid identification of chromosomes in Triticale. Hereditas (Lund) 75, 280–282 (1973)Google Scholar
  44. Merrick, S.; Ledley, R.S.; Lubs, H.A.: Production of G and C banding with progressive trypsin treatment. Pediat. Res. (1973)Google Scholar
  45. Merritt, J.F.; Burns, J.A.: Chromosome banding in Nicotiana otophora without denaturation and renaturation. J. Hered. 65, 101–103 (1974)Google Scholar
  46. Natarajan, A.T.; Ahnström, G.: Heterochromatin and chromosome aberrations. Chromosoma (Berl.) 28, 48–61 (1969)Google Scholar
  47. Natarajan, A.T.; Natarajan, S.: The heterochromatin of Rhoeo discolor. Hereditas (Lund) 72, 323–330 (1972)Google Scholar
  48. Pardue, M.L.; Gall, J.G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970)Google Scholar
  49. Rodman, T.C.: Thahiliani, S.: The Feulgen banded karyotype of the mouse: Analysis of the mechanisms of banding. Chromosoma (Berl.) 42, 37–56 (1973)Google Scholar
  50. Sarma, N.P.; Natarajan, A.T.: Identification of heterochromatic regions in the chromosomes of rye. Hereditas (Lund) 74, 233–238 (1973)Google Scholar
  51. Schnedl, W.: Analysis of the human karyotype using a reassociation technique. Chromosoma (Berl.) 34, 448–454 (1971)Google Scholar
  52. Schweizer, D.: Differential staining of plant chromosomes with Giemsa. Chromosoma (Berl.) 40, 307–320 (1973)Google Scholar
  53. Seabright, M.: The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma (Berl.) 36, 204–210 (1972)Google Scholar
  54. Shiraishi, Y.; Yosida, T.H.: Banding pattern analysis of human chromosomes by use of a urea treatment technique. Chromosoma (Berl.) 37, 75–83 (1972)Google Scholar
  55. Singh, R.J.; Lelley, T.: Giemsa banding in meiotic chromosomes of rye, Secale cereale L. Z. Pflanzenzüchtg. 75, 85–89 (1975)Google Scholar
  56. Stack, S.M.; Clarke, C.R.: Pericentromeric chromosome banding in higher plants. Can. J. Genet. Cytol. 15, 367–369 (1973a)Google Scholar
  57. Stack, S.M.; Clarke, C.R.: Differential Giemsa staining of the telomeres of Allium cepa chromosomes: Observations related to chromosome pairing. Can. J. Genet. Cytol. 15, 619–624 (1973b)Google Scholar
  58. Stack, S.M.: Differential Giemsa staining of kinetochores and nucleolus organizer heterochromatin in mitotic chromosomes of higher plants. Chromosoma (Berl.) 47, 361–378 (1974)Google Scholar
  59. Stockert, J.C.; Lisanti, J.A.: Acridine-orange differential fluorescence of fast- and slow-reassociating chromosomal DNA after in situ DNA denaturation and reassociation. Chromosoma (Berl.) 37, 117–130 (1972)Google Scholar
  60. Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exptl. Cell Res. 75, 304–306 (1972)Google Scholar
  61. Takehisa, S.; Utsumi, S.: Visualization of metaphase heterochromatin in Vicia faba by the denaturation-renaturation Giemsa staining method. Experientia 29/1, 120–121 (1973)Google Scholar
  62. Verma, S.C.; Rees, H.: Giemsa staining and the distribution of heterochromatin in rye chromosomes. Heredity 32, 118–123 (1974)Google Scholar
  63. Vosa, C.G.: Heterochromatin recognition with fluorochromes. Chromosoma (Berl.) 30, 366–371 (1970)Google Scholar
  64. Vosa, C.G.; Marchi, P.: Quinacrine fluorescence and Giemsa staining in plants. Nature New Biol. 237, 191–192 (1972)Google Scholar
  65. Vosa, C.G.: The basic karyotype of rye (Secale cereale) analysed with Giemsa and fluorescence methods. Heredity 33, 403–408 (1974)Google Scholar
  66. Weimarck, A.: Elimination of wheat and rye chromosomes in a strain of octoploid Triticale as revealed by Giemsa banding technique. Hereditas (Lund) 77, 281–286 (1974)Google Scholar
  67. Weimarck, A.: Heterochromatin polymorphism in the rye karyotype as detected by the Giemsa C-banding technique. Hereditas (Lund) 79, 293–300 (1975)Google Scholar
  68. Yunis, J.J.; Sanchez, O.: G-banding and chromosome structure. Chromosoma (Berl.) 44, 15–23 (1973)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • B. Friebe
    • 1
  1. 1.Institut für Angewandte Genetik der Freien Universität BerlinBRD

Personalised recommendations