, Volume 9, Issue 1, pp 68–77 | Cite as

Osmium tetroxide as a histochemical and histological reagent

  • C. W. M. Adams
  • Y. H. Abdulla
  • O. B. Bayliss


From the evidence discussed it can be concluded that osmium tetroxide (OsO4) would be reduced to black OsO2 (or an equivalent compound) by the ethylene bonds of liquid or solid cis-unsaturated lipids or by the Δ5-double bond in cholesterol in solid state in tissues. No evidence has been obtained to suggest that OsO4 is either reduced or bound by proteins and polysaccharides in tissue-sections.


Public Health Lipid Ethylene Cholesterol Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M.: A stricter interpretation of the ferric ferricyanide reaction with particular reference to the demonstration of protein-bound sulphydryl and di-sulphide groups. J. Histochem. Cytochem. 4, 23–35 (1956).Google Scholar
  2. —: Histochemical mechanisms of the Marchi reaction for degenerating myelin. J. Neurochem. 2, 178–186 (1958).Google Scholar
  3. —: A histochemical method for the simultaneous demonstration of normal and degenerating myelin. J. Path. Bact. 77, 648–650 (1959).Google Scholar
  4. —: Osmium tetroxide and the Marchi method: reactions with polar and non-polar lipids, protein and polysaccharide. J. Histochem. Cytochem. 8, 262–267 (1960).Google Scholar
  5. —: Histochemistry of lipids. In: Neurohistochemistry, p. 6–66. Amsterdam: Elsevier 1965.Google Scholar
  6. Bahr, G. F.: Osmium tetroxide and ruthenium tetroxide and their reactions with biologically active substances. Exp. Cell Res. 7, 457–479 (1954).Google Scholar
  7. Baker, J. R.: Fixation in cytochemistry and electron microscopy. J. Histochem. Cytochem. 6, 303–308 (1958).Google Scholar
  8. Belt, W. D., and E. R. Hayes: An ultraviolet-Schiff reaction for unsaturated lipids. Stain Technol. 31, 117–122 (1956).Google Scholar
  9. Cain, A. J.: The biochemistry of lipids in animals. Biol. Rev. 25, 73–112 (1950).Google Scholar
  10. Chisholm, M. J., and C. Y. Hopkins: Occurrence of trans-9-trans-12-octadecadienoic acid as a seed oil component. Canad. J. Chem. 41, 1888–1892 (1963).Google Scholar
  11. Criegie, R.: Osmiumsäureester als Zwischenprodukte bei Oxydationen. Ann. Chem. 522, 75–96 (1936).Google Scholar
  12. —, B. Marchand, and H. Wannowius: Zur Kenntnis der organischen Osmium-Verbindungen. Ann. Chem. 550, 99–133 (1942).Google Scholar
  13. Gomori, G.: Microscopic histochemistry. Chicago: Chicago University Press 1952.Google Scholar
  14. Hake, T.: Studies on the reactions of OsO4 and KMnO4 with aminoacids, peptides and proteins. Lab. Invest. 14, 1208–1212 (1965).Google Scholar
  15. Jackson, J. E.: Isomers of linoleic acid. Infrared and ultraviolet properties of methyl esters. J. Amer. Oil Chem. Soc. 29, 229–234 (1952).Google Scholar
  16. Kass, J. P., J. Nichols, and G. O. Burr: The geometric isomerism of the linolenic acids. Elaidolinolenic acid. J. Amer. chem. Soc. 63, 1060–1063 (1941).Google Scholar
  17. Khan, A. A., J. C. Riemersma, and H. L. Booij: The reactions of osmium tetroxide with lipids and other compounds. J. Histochem. Cytochem. 9, 560–563 (1961).Google Scholar
  18. Korn, E. D.: Synthesis of bis (methyl 9,10-dihydroxystearate) osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material. Biochim. biophys. Acta (Amst.) 116, 317–324 (1966a).Google Scholar
  19. —: Modification of oleic acid during fixation of amoebae by osmium tetroxide. Biochim. biophys. Acta (Amst.) 116, 325–330 (1966b).Google Scholar
  20. —: Structure of biological membranes. Science 153, 1491–1498 (1966c).Google Scholar
  21. Marchi, V.: Sulle degenerazioni consecutive all'estirpazione totale e parziale dei cervelletto. Riv. sper. Freniat. 12, 50–56 (1886).Google Scholar
  22. Marinetti, G., and E. Stotz: Studies on the structure of sphingomyelin. IV. Configuration of the double bond in sphingomyelin and related lipids and a study of their infrared spectra. J. Amer. chem. Soc. 76, 1347–1352 (1954).Google Scholar
  23. Mead, J. F., D. R. Howton, and J. C. Nevenzel: In: Comprehensive biochemistry (ed. by M. Florkin and E. Stotz), vol. 6, p. 1. Amsterdam: Elsevier 1965.Google Scholar
  24. Milas, N. A., J. H. Trepagnier, J. T. Noland jr., and M. I. Iliopulous: A study of the hydroxylation of olefins and the reaction of osmium tetroxide with 1,2-glycols. J. Amer. chem. Soc. 81, 4730–4733 (1959).Google Scholar
  25. Nijkamp, H. J.: A simple chromatographic method for the saturated straight chain fatty acids C10–C24. Anal. chim. Acta 10, 448–458 (1964).Google Scholar
  26. Norton, W. T., S. R. Korey, and M. Brotz: Histochemical demonstration of unsaturated lipids by a bromine-silver method. J. Histochem. Cytochem. 10, 83–88 (1962).Google Scholar
  27. Porter, K. R., and F. Kallman: The properties and effects of osmium tetroxide as a tissue fixative with special reference to its use for electron microscopy. Exp. Cell Res. 4, 127–141 (1953).Google Scholar
  28. Riemersma, J. C.: Osmium tetroxide fixation of lipids: nature of the reaction products. J. Histochem. Cytochem. 11, 436–442 (1963).Google Scholar
  29. —, and H. L. Booij: The reaction of osmium tetroxide with lecithin: application of staining procedures. J. Histochem. Cytochem. 10, 89–95 (1962).Google Scholar
  30. Roberts, I., and G. E. Kimball: The halogenation of ethylenes. J. Amer. chem. Soc. 59, 947–948 (1937).Google Scholar
  31. Roberts, J. D., and M. C. Caserio: Basic principles of organic chemistry. New York: Benjamin 1965.Google Scholar
  32. Rogers, G. E.: Electron microscopy of wool. J. Ultrastruct. Res. 2, 309 (1959).Google Scholar
  33. Salem, L.: Attractive forces between long saturated chains at short distances. J. chem. Phys. 37, 2100–2113 (1962).Google Scholar
  34. Seligman, A. M., J. S. Hanker, H. Wasserkrug, H. Dimochowski, and L. Katzoff: Histochemical demonstration of some oxidized macromolecules with thiocarbohydrazide (TCH) or thiosemicarbazide (TSC) and osmium tetroxide. J. Histochem. Cytochem. 13, 629–639 (1965).Google Scholar
  35. Stoeckenius, W.: Osmium tetroxide fixation of lipids. In: Proc. European Regional Conference on Electron Microscopy (ed. by A. L. Howink and B. J. Spit), p. 716. Delft 1960.Google Scholar
  36. —, and S. C. Mahr: Studies in the reaction of osmium tetroxide with lipids and related compounds. Lab. Invest. 14, 1196–1207 (1965).Google Scholar
  37. Swern, D., and J. T. Scanlan: Elaidic acid. Biochem. Prep. 3, 118–120 (1953).Google Scholar
  38. Weast, R. C. (ed.): Handbook of chemistry and physics, 46th ed., p. B 201, C.435–437. Cleveland, Ohio: Chemical Rubber Company 1965–1966.Google Scholar
  39. Wigglesworth, V. B.: The use of osmium in the fixation and staining of tissues. Proc. roy. Soc. B147, 185–199 (1957).Google Scholar
  40. Wingfield, H. C., and J. H. Yoe: Colorimetric determination of osmium (VI) with 1-naphthylamine-3,4,7-trisulphonic acid. Anal. chim. Acta 14, 446–451 (1956).Google Scholar
  41. Wolman, M.: Histochemical study of changes occurring during the degeneration of myelin. J. Neurochem. 1, 370–376 (1957).Google Scholar
  42. Zelikoff, M., and H. A. Taylor: The osmium tetroxide catalyzed oxidation of fumaric and maleic acids. J. Amer. chem. Soc. 72, 5039–5042 (1950).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • C. W. M. Adams
    • 1
  • Y. H. Abdulla
    • 1
  • O. B. Bayliss
    • 1
  1. 1.Department of PathologyGuy's Hospital Medical SchoolLondonEngland

Personalised recommendations