Convergence of solutions of H-systems or how to blow bubbles

  • H. Brezis
  • J. M. Coron
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Benci & J. M. Coron, The Dirichlet problem for harmonic maps from the disk into the Euclidean n-sphere. Ann. I.H.P. Analyse Nonlinéaire (to appear).Google Scholar
  2. 2.
    H. Brezis & J. M. Coron, Multiple solutions of H-systems and Rellich's conjecture. Comm. Pure Appl. Math. 37 (1984), 149–187. See also Sur la conjecture de Rellich pour les surfaces à courbure moyenne prescrite. C. R. Acad. Sc. Paris 295 (1982), 615–618.Google Scholar
  3. 3.
    H. Brezis & J. M. Coron, Convergence de solutions de H-systèmes et application aux surfaces a courbure moyenne constante. C. R. Acad. Sc. Paris 298 (1984), 389–392.Google Scholar
  4. 4.
    H. Brezis & E. H. Lieb, Minimum action solutions of some vector field equations. Comm. Math. Phys. (to appear).Google Scholar
  5. 5.
    B. Gidas, W. M. Ni & L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 200–243.Google Scholar
  6. 6.
    R. D. Gulliver, R. Osserman & H. L. Royden, A theory of branched immersions of surfaces. Amer. J. Math. 95 (1973), 750–812.Google Scholar
  7. 7.
    E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung. Math. Ann. 127 (1954), 258–287.Google Scholar
  8. 8.
    S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970), 97–114.Google Scholar
  9. 9.
    S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings. Proc. 1980 Beijing Symp. Diff. Geom. and Diff. Eq., S. S. Chern and Wu Wen-tsün ed. Science Press Beijing (1982) and Gordon-Breach.Google Scholar
  10. 10.
    J. Jost, Harmonic mappings between surfaces. Lectures notes in Math. Volume 1062, Springer (1984).Google Scholar
  11. 11.
    L. Lemaire, Applications harmoniques de surfaces Riemanniennes. J. Diff. Geometry 13 (1978), 51–78.Google Scholar
  12. 12.
    E. H. Lieb, On the lowest eigenvalue of the laplacian for the intersection of two domains. Invent. Math. 74 (1983), 441–448.Google Scholar
  13. 13.
    P. L. Lions, Principe de concentration-compacité en calcul des variations. C. R. Acad. Sci. Paris 294 (1982), 261–264. The concentration-compactness principle in the calculus of variations: the locally compact case. Part I, Ann. I.H.P. Analyse Non-linéaire 1 (1984), 109–145 and Part II 1 (1984), 223–283.Google Scholar
  14. 14.
    P. L. Lions, Applications de la méthode de concentration compacité à l'existence de fonctions extrémales. C. R. Acad. Sci. Paris 296 (1983) p. 645–648. The concentration-compactness principle in the calculus of variations: the limit case. Parts I and II, Riv. Iberoamericana (to appear).Google Scholar
  15. 15.
    W. Meeks & S. T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Annals of Math. 112 (1980), 441–484.Google Scholar
  16. 16.
    E. A. Ruh, Asymptotic behaviour of non-parametric minimal hypersurfaces. J. Diff. Geometry, 4 (1970), 509–513.Google Scholar
  17. 17.
    J. Sacks & K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Ann. Math. 113 (1981), 1–24.Google Scholar
  18. 18.
    J. Serrin, On surfaces of constant mean curvature which span a given space curve. Math. Z. 112 (1969), 77–88.Google Scholar
  19. 19.
    Y.-T. Siu & S. T. Yau. Compact Kähler manifolds of positive bisectional curvature. Invent. Math. 59 (1980), 189–204.Google Scholar
  20. 20.
    G. Springer, Introduction to Riemann surfaces. Addison-Wesley, Reading MA-London (1957).Google Scholar
  21. 21.
    K. Steffen, Flächen konstanter mittlerer Krümmung mit vorgegebenem Volumen oder Flächeninhalt. Archive Rational Mech. Anal. 49 (1972), 99–128.Google Scholar
  22. 22.
    K. Steffen, On the nonuniqueness of surfaces with prescribed mean curvature spanning a given contour, (to appear).Google Scholar
  23. 23.
    M. Struwe, Non uniqueness in the Plateau problem for surfaces of constant mean curvature, (to appear).Google Scholar
  24. 24.
    M. Struwe, A global existence result for elliptic boundary value problems involving limiting nonlinearities, (to appear).Google Scholar
  25. 25.
    C. H. Taubes, Path connected Yang-Mills moduli spaces. J. Diff. Geom. (to appear).Google Scholar
  26. 26.
    H. Wente, An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26 (1969), 318–344.Google Scholar
  27. 27.
    H. Wente, The differential equation 56–01 with vanishing boundary values. Proc. A.M.S. 50 (1975), 131–137.Google Scholar
  28. 28.
    H. Wente, Large solutions to the volume constrainted Plateau proplem. Arch. Rational Mech. Anal. 75 (1980), 59–77.Google Scholar
  29. 29.
    H. Werner, Das Problem von Douglas für Flächen konstanter mittlerer Krümmung. Math. Ann. 133 (1957), 303–319.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1983

Authors and Affiliations

  • H. Brezis
    • 1
    • 2
  • J. M. Coron
    • 1
    • 2
  1. 1.Départment de MathématiquesUniversité de Paris VIItaly
  2. 2.Départment de MathématiquesEcole PolytechniquePalaiseau

Personalised recommendations