Stretching in some classes of fluid motions and asymptotic mixing efficiencies as a measure of flow classification

  • R. Chella
  • J. M. Ottino


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Truesdell, C., A First Course in Rational Continuum Mechanics, Part I: Fundamental Concepts. Academic Press: New York, 1977.Google Scholar
  2. 2.
    Truesdell, C., & R. A. Toupin, The Classical Field Theories. In Flügge's Handbuch der Physik, III/1. Berlin-Heidelberg-New York: Springer (1960).Google Scholar
  3. 3.
    Ottino, J. M., Macosko, C. W., & Ranz, W. E., A framework for the description of mechanical mixing of fluids. Amer. Inst. Chem. Eng. J. 27, 565–577 (1981).Google Scholar
  4. 4.
    Ottino, J. M., Ranz, W. E., & Macosko, C. W., A lamellar model for analysis of liquid mixing. Chem. Eng. Sci. 34, 877–890 (1979).Google Scholar
  5. 5.
    Fuller, G. G., & Leal, L. G., Flow birefringence of concentrated polymer solutions in two-dimensional flows. J. Polym. Sci.: Polym. Phys. Ed. 19, 557–564 (1974).Google Scholar
  6. 6.
    Noll, W., Motions with constant stretch history. Arch. Rational Mech. Anal. 11, 97–105 (1962).Google Scholar
  7. 7.
    Wang, C.-C., A representation theorem for the constitutive equation of a simple material in motions with constant stretch history. Arch. Rational Mech. Anal. 20, 329–340 (1965).Google Scholar
  8. 8.
    Coleman, B. D., Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids. Arch. Rational Mech. Anal. 9, 273–300 (1961).Google Scholar
  9. 9.
    Tadmor, Z., & Gogos, C. G., Principles of Polymer Processing, New York, Wiley-Interscience (1979).Google Scholar
  10. 10.
    Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge: University Press (1967).Google Scholar
  11. 11.
    Olbricht, W. J., Rallison, J. M., & Leal, L. G., Strong flow criteria based on microstructure deformation. J. Non-Newtonian Fluid Mech. 10, 291–318 (1982).Google Scholar
  12. 12.
    Astarita, G., Objective and generally applicable criteria for flow classification. J. Non-Newtonian Fluid Mech. 6, 69–76 (1976).Google Scholar
  13. 13.
    Tanner, R. I., & R. R. Huilgol, On a classification scheme for flow fields. Rheol. Acta 14, 959–962 (1975).Google Scholar
  14. 14.
    Tanner, R. I., A test particle approach to flow classification for viscoelastic fluids. Amer. Inst. Chem. Eng. J. 22, 910–914 (1976).Google Scholar
  15. 15.
    Truesdell, C., The Kinematics of Vorticity, Bloomington: Indiana University Press (1954).Google Scholar
  16. 16.
    Serrin, J., Mathematical Principles of Classical Fluid Mechanics. In Flügge' Handbuch der Physik, VIII/1. Berlin-Heidelberg-New York: Springer (1960).Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1985

Authors and Affiliations

  • R. Chella
    • 1
  • J. M. Ottino
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MassachusettsAmherst

Personalised recommendations